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Background and Introduction
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Medical image segmentation

• Enables diagnosis using high-
precision CT images

• Supports surgery using high-
precision laparoscopic images

• Development of deep learning-based 
segmentation systems is required

Segmentation of Organs and Tools from Endoscopic Video Images

Segmentation from CT scans,Heart (Left), Abdominal Organs (Right)

Deep learning-based 
segmentation
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Challenge in medical image segmentation 

Problem:

• The need to create a large amount of annotated data

• Increasing annotation costs due to the growing number of medical images

• The need to train high-accuracy segmentation models with low-cost 
annotations in laparoscopic image and CT volume segmentation task

Creating labels requires expert knowledge and is time-consuming

Annotation type CT laparoscopic
Pixel-level 5-10 min 3-10 min

Category-level 5-15 s 10-30 s
No label 0 0

Wanying Shi, et al.

Time costs for annotation in 1 slice
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Related Works

Utilizing category annotations.

• Using multi-task training for feature optimization [1,2].

• Using contrastive learning task for model pre-training [3]. 

Dense Annotation

Labeled ImageLabeled Image

Dense Annotation

Scribble-Supervised Segmentation

Dense Label

Unlabeled ImageLabeled Image

No Label

Semi-Supervised Segmentation

High annotation cost Low annotation cost

Dense Annotation

Unlabeled ImageLabeled Image

Category Annotation

Semi-Supervised Segmentation

Duodenum,
Liver, 
intestine, etc

[1] Li, Zihan, et al. “Scribblevc: Scribble-supervised medical 
image segmentation with vision-class embedding.” ACM, 2023.
[2] Wei, Hongbin, et al. "Only Classification Head Is Sufficient 
for Medical Image Segmentation." PRCV, 2023.
[3] Zeng, Dewen, et al. "Positional contrastive learning for 
volumetric medical image segmentation." MICCAI, 2021.
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Related Works

Utilizing few labeled data and lots of unlabeled data.

• Employing EMA models for pseudo-label learning [1,2].

• Applying ensemble learning for cross-supervision [3].

Dense Annotation

Labeled ImageLabeled Image

Dense Annotation

Scribble-Supervised Segmentation

Dense Label

Unlabeled ImageLabeled Image

No Label

Semi-Supervised Segmentation

High annotation cost Low annotation cost

Dense Annotation

Unlabeled ImageLabeled Image

Category Annotation

Semi-Supervised Segmentation

Duodenum,
Liver, 
intestine, etc

[1] Yu, Lequan, et al. "Uncertainty-aware self-ensembling model 
for semi-supervised 3D left atrium segmentation." MICCAI, 2019.
[2] Kimhi, Moshe, et al. "Semi-Supervised Semantic Segmentation 
via Marginal Contextual Information." TMLR, 2024
[3] Chen, Xiaokang, et al. "Semi-supervised semantic 
segmentation with cross pseudo supervision." CVPR. 2021.
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Aim of our study
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• Topic 1

Train laparoscopic video segmentation model with 
limited pixel-Level annotated data and 

abundant category-Level annotated data 

• Topic 2

Train CT segmentation model with 

limited pixel-Level annotated data and 

abundant data without annotation

• Above all

Training medical image segmentation models with 
low annotation costs

Pixel-Level annotation

“背景”、“腹壁”、“肝臓”、
“脂肪”、“鉗子”、“胆嚢”、 
“フック”

Category-Level annotation

Volumes with annotation 

Volumes with no annotation 

Propose two different solutions for laparoscopic 
and CT data.



Topic１
Towards better laparoscopic video segmentation: A 
class‐wise contrastive learning approach with multi‐scale 
feature extraction.

Zhang, Luyang, et al. "Towards better laparoscopic video segmentation: A class‐wise contrastive learning approach 
with multi‐scale feature extraction." Healthcare Technology Letters 11.2-3 (2024): 126-136.
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Background

CAS requires segmentation
• Evaluate the condition of organs and 

tissues

• Identify the position and orientation of 
surgical tools

Deep learning-based CAS system
• To train high-precision models, extensive 

data annotation is necessary 
Problem: 
High annotation cost

[1] Hyung, Woo Jin. "Robotic surgery in gastrointestinal 
surgery." The Korean journal of gastroenterology= 
Taehan Sohwagi Hakhoe chi 50.4 (2007): 256-259.

(a) CAS
(b) Laparoscopic images including tools and organs [1]

(a)

(b)
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Low-cost annotation

Solution:
Utilize data with low-cost  annotations.
Motivation:
Train a segmentation model using 
a small amount of pixel-level 
annotated data and a large amount of 
class-level annotated data.

Reduce annotation costs.

Pixel-Level annotation Category-Level annotation

High Low

Complete

Annotation cost

Incomplete

ツールと臓器：“背景”、“腹
壁”、“肝臓”、“脂肪”、“鉗
子”、“胆嚢”、 “フック”
手術段階： “胆嚢の分離”

Annotation 
information
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Multi-task training 

Optimize the features extracted by the same 
segmentation model using multitasking.
Main Task
Segmentation Task
• Input: Data with segmentation annotations
• Label: Pixel-level annotations
Subtasks
Classification Task
• Input: Data without segmentation annotations
• Label: Pixel-level annotations
Contrastive Learning Task
• Input: Positive pairs
Objective of subtasks:
Optimize the extracted features

Main task Sub task

Class: “Black Background”, 
“Abdominal Wall”, “Liver”, 
“Fat”, “Grasper”, and 
“Gallbladder” in “Gallbladder 
Dissection”

Category-Level annotation

Data without pixel-level 
annotation

Feature Optimizing

Pixel-Level annotation

Data with pixel-level 
annotation

Segmentation 
model
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Contrastive learning

model
Positive pair

Negative pair

Feature extraction featuresInput images

Increase the 
similarity

Decrease the 
similarity

Positive Pair（正例）: Image pairs with similar information
Negative Pair: Image pairs with different information
Objective: Increase the similarity between features extracted from positive pairs
Decrease the similarity between features extracted from negative pairs
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提案：Positive pairs definition

• Images containing the same category are similar.

• Images captured at the same surgical stage, 
with the same tools and organs, are set as 
positive pairs.

A novel positive pairs definition method in 
Laparoscopic image segmentation task 
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Feature Extraction in segmentation model

Skip Connection

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical 
image segmentation,” in MICCAI 2015, LNIP 9351, 234–241, Springer (2015).

Encoder Decoder

U-Net[1]
• A segmentation model for medical 

images

• Structure of Encoder and Decoder

• Skip connections are applied to retain 
information at each scale

Skip Connection
• Features extracted from each scale are 

transferred to the Decoder
Optimization of features in each scale is 
necessary
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提案：Multi-Scale Projection Head (MSPH)

[1] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
[2] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020.
[3] Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." Proceedings of the IEEE/CVF International Conference on 
Computer Vision. 2021.

Encoder

Conv2d

BatchNorm

GlobalPooling

Multi-Scale Projection Head

Multi scale mapping

Projection Head [1,2,3]
•Maps high-dimensional features to a lower-
dimensional space.

•Used to calculate contrastive loss, bringing 
features from positive pairs closer in the 
projection space.

Multi-Scale Projection Head (MSPH)
•In the proposed MSPH, features from each 
scale are mapped to a lower-dimensional 
space.

•Enables optimization of features from 
multiple scales.

Projection Head
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Optimize features using sub-tasks

Encoder

Contrastive Loss

Multi-Scale Projection Head

Positive pair

Contrastive Learning
• Create image pairs using class-

level labels.

• Input the image pairs into the 
model and extract features from 
each scale.

• Perform contrastive learning 
between features at each scale 
for positive pairs.
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Optimize features using sub-tasks

Encoder

Contrastive Loss

Classification 
Projection Head

Classification Loss

Classification Label

Classification Task

Contrastive Learning
• Create image pairs using class-

level labels.

• Input the image pairs into the 
model and extract features from 
each scale.

• Perform contrastive learning 
between features at each scale 
for positive pairs.

Classification Task
• Pass features through a 

classification projection head for 
classification learning.

Multi-Scale Projection Head

Positive pair
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提案：Proposed method

Segmentation task
Calculate segmentation loss on 
images with pixel-level annotations.
Classification task
Calculate classification loss on 
images without pixel-level 
annotations.
Contrastive learning task 
Calculate contrastive loss on 
features extracted between 
positive pairs using MSPH.

The model's loss is set as the sum 
of segmentation loss, classification 
loss, and contrastive loss.

Encoder

Contrastive Loss

Classification 
Projection Head

Classification Loss

Classification Label

Classification Task

Decoder

Segmentation Loss

Multi-Scale Projection Head

Contrastive
Segmentation

Classification

Ground 
Truth

Positive pair
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Loss function

Parameters
• 𝐏: decoder output; 
• 𝐙: the features extracted by MSPH from positive 

pairs;
• N: the count of positive pairs
• c : the feature extracted by the classification 

projection head
• 𝐠, 𝐲: ground truth of classification and 

segmentation. 

• 𝐿𝐶𝐸: Cross Entropy;
• 𝐿𝐹𝑜𝑐𝑎𝑙: Focal Loss [1]; 
• 𝐿𝐺𝐷𝐿 : Generalized Dice Loss [2];

• 𝐿𝐶𝐿 Contrastive Supervision Loss [3] ;
• α, β: hyperparameter

𝐿𝑆𝑒𝑔 = 𝐿𝐺𝐷𝐿 𝐏, 𝐠 + 𝐿𝐹𝑜𝑐𝑎𝑙 𝐏, 𝐠

Classification task

Contrastive learning task

Segmentation task

[1] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2017). Focal Loss for Dense Object Detection. In 
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988.
[2] Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Jorge Cardoso, M. (2017). Generalised Dice overlap 
as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support (pp. 240-248). Springer, Cham.
[3] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: 
Supervised contrastive learning. Advances in Neural Information Processing Systems 33 (2020)

𝐿𝑐𝑙𝑠 = 𝐿𝐶𝐸 𝐜, 𝐲

𝐿𝐷𝐶𝐿 = ෍

𝑖=1

𝑁

𝐿𝐶𝐿(𝐙𝑖)

Proposed method

𝐿𝑎𝑙𝑙 = 𝐿𝑆𝑒𝑔+ α𝐿𝐷𝐶𝐿 + β𝐿𝑐𝑙𝑠
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Experiment setting 

• Datasets

– CholecSeg8k [1]

Laparoscopic images of 
cholecystectomy from 17 
videos, totaling 8,080 frames.

8 categories

CholecSeg8k Ground-truth

[1] Hong, W-Y., et al., CholecSeg8k: A Semantic Segmentation Dataset for Laparoscopic 
Cholecystectomy Based on Cholec80, arXiv preprint arXiv:2012.12453, 2020.

• Segmentation model
5 layers U-Net

Conv2d 3×3

48 × 512 × 512

96 × 256 × 256

Encoder Basic Block

192 × 128× 128

384 × 64 × 64

768 × 32 × 32

Down Sample

Encoder Basic Block

Encoder Basic Block

Encoder Basic Block

Down Sample

Down Sample

Down Sample

Encoder Basic Block

48 × 512 × 512

512 × 512

768 × 32 × 32

Conv2d 3×3 Conv2d 3×3

768 × 32 × 32

Up Sample

Decoder Basic Block

768 × 64× 64

Up Sample

Decoder Basic Block

384 × 128 × 128

Up Sample

Decoder Basic Block

192 × 256 × 256

Up Sample

Decoder Basic Block

96 × 512 × 512

Decoder Basic Block

Conv2d 3×3

16 × 512 × 512

Conv2d 3×3

Conv2d 3×3

BatchNorm

ELU

× 2

Encoder Basic Block & Decoder Basic Block

Feature Map

Blocks

Long Connection (Concat)

Max pooling 2×2 , stride = 2

Down Sample

Up Sample

ConvTranspose 3×3, stride = 2
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Experiment setting

臓器とツール（カテゴリー）の英和対照

•Background（背景）
•Abdominal Wall（腹壁）
•Liver （肝臓）
•Fat（脂肪）
•Grasper（把持鉗子）
•Connective Tissue（結合組織）
•L-hook Electrocautery（L字型電気メス）
•Gallbladder（胆嚢） 
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Experiment setting

• Mainstream Approaches

U-Net [1]         Baseline

SimCLR [2] Positive pairs are formed by using an image and its augmented version

Ours DCL         Contrastive task + Segmentation task

Ours cls Classification task+ Segmentation task

Ours DCL+cls Contrastive task + classification task+ Segmentation task

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in 
MICCAI 2015, LNIP 9351, 234–241, Springer (2015).
[2] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on 
machine learning. PMLR, 2020.
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Experiment result (IOU)

Pixel labeled
Samples

Background
Abdominal 

Wall
Liver Fat Grasper

Connective 
Tissue

L-hook 
Electrocautery

Gallbladder

U-Net [1] 1% 0.953 ± 0.004 0.519 ± 0.009 0.442 ± 0.036 0.761 ± 0.005 0.157 ± 0.006 0.007 ± 0.009 0.132 ± 0.005 0.241 ± 0.021

5% 0.926 ± 0.034 0.664 ± 0.052 0.501 ± 0.045 0.796 ± 0.024 0.326 ± 0.112 0.265 ± 0.063 0.310 ± 0.123 0.360 ± 0.078

10% 0.941 ± 0.008 0.612 ± 0.034 0.461 ± 0.023 0.767 ± 0.004 0.226 ± 0.042 0.091 ± 0.120 0.187 ± 0.132 0.335 ± 0.038

SimCLR [2] 1% 0.905 ± 0.012 0.482 ± 0.007 0.431 ± 0.023 0.742 ± 0.004 0.188 ± 0.030 0.040 ± 0.027 0.200 ± 0.057 0.210 ± 0.016

5% 0.901 ± 0.008 0.558 ± 0.018 0.464 ± 0.023 0.762 ± 0.013 0.303 ± 0.014 0.009 ± 0.006 0.328 ± 0.017 0.324 ± 0.012

10% 0.932 ± 0.002 0.633 ± 0.015 0.403 ± 0.008 0.780 ± 0.005 0.311 ± 0.030 0.342 ± 0.061 0.401 ± 0.008 0.393 ± 0.027

Ours DCL 1% 0.952 ± 0.005 0.542 ± 0.048 0.519 ± 0.017 0.755 ± 0.000 0.154 ± 0.020 0.096 ± 0.071 0.128 ± 0.148 0.252 ± 0.019

5% 0.953 ± 0.003 0.606 ± 0.066 0.505 ± 0.038 0.797 ± 0.018 0.300 ± 0.092 0.246 ± 0.139 0.264 ± 0.188 0.374 ± 0.111

10% 0.936 ± 0.004 0.631 ± 0.024 0.484 ± 0.007 0.792 ± 0.008 0.310 ± 0.059 0.305 ± 0.098 0.420 ± 0.059 0.421 ± 0.033

Ours cls 1% 0.955 ± 0.000 0.534 ± 0.034 0.494 ± 0.019 0.773 ± 0.016 0.192 ± 0.004 0.053 ± 0.047 0.001 ± 0.001 0.262 ± 0.028

5% 0.925 ± 0.013 0.576 ± 0.057 0.444 ± 0.014 0.775 ± 0.022 0.245 ± 0.089 0.182 ± 0.079 0.356 ± 0.092 0.320 ± 0.076

10% 0.945 ± 0.005 0.657 ± 0.025 0.485 ± 0.016 0.796 ± 0.019 0.341 ± 0.031 0.400 ± 0.133 0.417 ± 0.064 0.458 ± 0.023

Ours DCL+cls 1% 0.952 ± 0.006 0.614 ± 0.034 0.498 ± 0.019 0.762 ± 0.005 0.178 ± 0.005 0.060 ± 0.035 0.137 ± 0.019 0.287 ± 0.017

5% 0.944 ± 0.012 0.624 ± 0.023 0.438 ± 0.035 0.798 ± 0.004 0.296 ± 0.070 0.336 ± 0.031 0.338 ± 0.046 0.365 ± 0.027

10% 0.948 ± 0.013 0.638 ± 0.019 0.485 ± 0.008 0.791 ± 0.009 0.407 ± 0.016 0.404 ± 0.042 0.405 ± 0.032 0.447 ± 0.030

The performance of the proposed methods outperforms related methods, 
especially in improving segmentation accuracy for small targets.
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Experiment result (IOU)

The proposed method 
demonstrates high 
accuracy with few pixel-
level labeled data (1% or 
5%), confirming its 
effectiveness in situations 
with limited data.
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2-Step Training

Step 1 Pretrain the 
encoder by sub tasks 

Encoder

Contrastive LossPositive pair

Classification 
Projection Head

Classification Loss

Classification Label

Classification TaskMulti-Scale Projection Head

対照学習タスク

分類タスク
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Decoder

Segmentation Loss
セグメンテーションタスク

Ground 
Truth

Pretrained Encoder

Freeze

Step 2 Freeze the Pretrained encoder and train the Decoder by segmentation task

2-Step Training

27



2-Step Training Result

Background Abdominal Wall Liver Fat Grasper
Connective 

Tissue
L-hook 

Electrocautery
Gallbladder

SimCLR [1] 2-stage 0.921 ± 0.012 0.653 ± 0.005 0.528 ± 0.021 0.773 ± 0.013 0.250 ± 0.020 0.206 ± 0.038 0.360 ± 0.021 0.389 ± 0.012

BYOL [2] 0.916 ± 0.015 0.651 ± 0.027 0.520 ± 0.025 0.776 ± 0.011 0.250 ± 0.014 0.205 ± 0.037 0.359 ± 0.040 0.419 ± 0.018

Ours DCL 0.933 ± 0.006 0.657 ± 0.034 0.522 ± 0.010 0.779 ± 0.001 0.252 ± 0.015 0.219 ± 0.037 0.354 ± 0.026 0.413 ± 0.050

Ours DCL+cls 0.924 ± 0.005 0.659 ± 0.022 0.519 ± 0.015 0.779 ± 0.014 0.266 ± 0.008 0.212 ± 0.026 0.368 ± 0.032 0.407 ± 0.024

[1] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
[2] Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., Kavukcuoglu, K., Munos, R., & Valko, M. 
(2020). Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning. In Advances in Neural Information Processing Systems (NeurIPS) 2020.

The performance of the proposed 
methods outperforms related 2-step 
methods, especially in improving 
segmentation accuracy for smaller targets.
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Discussion

Ground Truth

Random

SimCLR

Ours

Cls MSPH 1% 10%

X X 0.389 0.453

X Ο 0.425 0.537

Ο X 0.407 0.532

Ο Ο 0.424 0.565

Method 1% 10%

U-Net 0.389 0.453

SimCLR 0.400 0.513

Proposed 0.424 0.565

mDice using 1% and 10% data Ablation Study

Discussion
• The method we propose outperforms related works 

in the field.

• In cases involving categories that are closely related 
or similar, our method demonstrates superior 
capability in distinguishing and identifying each 
category accurately.

• The ablation studies validate the effectiveness of 
each introduced improvement.
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Discussion
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◆ What issues are we dealing with in this study?
➢ Creating pixel-level annotation is expensive 

➢ Segmentation performance with limited annotations is not good 
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◆ What issues are we dealing with in this study?
➢ Creating pixel-level annotation is expensive 

➢ Segmentation performance with limited annotations is not good 

◆ How did we reduce the annotation cost?
➢ Employed a sub-task to enhance model training with low-cost annotations (category-wise 

annotation)

➢ Proposed a novel positive pair definition method for contrastive learning in Laparoscopic image 
segmentation task.

➢ Proposed a novel MSPH for multi-scale feature optimizing.
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◆ What issues are we dealing with in this study?
➢ Creating pixel-level annotation is expensive 

➢ Segmentation performance with limited annotations is not good 

◆ How did we reduce the annotation cost?
➢ Employed a sub-task to enhance model training with low-cost annotations (category-wise 

annotation)

➢ Proposed a novel positive pair definition method for contrastive learning in Laparoscopic image 
segmentation task.

➢ Proposed a novel MSPH for multi-scale feature optimizing.

◆ What are the limitations of our method?
➢ The results have not been evaluated by doctors, making it impossible to estimate their actual 

significance in clinical practice.

➢ Category–level annotation still needs annotation costs, even it is low.

In the next topic, we will discuss another method to improve segmentation performance without 
category-level annotations, cased lower annotation cost



Topic 2
Double-Mix Pseudo-Label Framework: Enhancing Semi-
Supervised Segmentation on Category-Imbalanced CT 
Volumes

Zhang, Luyang, et al. "Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes." International Journal of Computer Assisted 
Radiology and Surgery, doi:10.1007/s11548-024-03281-1
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Background
Automatic Abdominal Organ Segmentation from CT Images

• Enables accurate diagnosis using high-quality CT images.

• Increasing the number of CT images places a greater burden on radiologists.

• Developing a segmentation system using deep learning is essential to reduce this burden.

Semi-supervised Multi-organ Segmentation

• It is challenging to obtain a large amount of annotated data.

• Semi-supervised learning using unlabeled image data is effective.

• Semi-supervised learning methods such as Mean Teacher [1], Model Mix [2], and CPS [3] 
have been proposed.

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." Advances in 
neural information processing systems 30 (2017).
[2] Zhang, Ke, and Vishal M. Patel. "Modelmix: A new model-mixup strategy to minimize vicinal risk across tasks for few-scribble based cardiac segmentation." International 
Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.
[3] Chen, Xiaokang, et al. "Semi-supervised semantic segmentation with cross pseudo supervision." Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition. 2021.
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Low-cost annotation

Solution:
Utilize data without annotations.
Motivation:
Train a segmentation model using 
a small amount of annotated data 
and a large amount of unannotated 
data.

Reduce annotation costs.

Dense Label

Labeled ImageLabeled Image

Dense Label

Fully-Supervised Segmentation

Dense Label

Unlabeled ImageLabeled Image

No Label

Semi-Supervised Segmentation

High Low

Complete

Annotation cost

Incomplete
Annotation 
information

Utilize Cross Pseudo Supervision (CPS) with pseudo-labels from different models.
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Cross Pseudo Supervision (CPS)

Strong Augmented 
Sample Process

Weakly Augmented 
Sample Process

Cross Supervision 
Process

• Two different networks make 
predictions on different 
augmentations of the same 
image to generate pseudo-
labels.

• One pseudo-label serves as 
training data for the other 
model.

• Cross Pseudo allows use in 
cases without labels, and 
accuracy improves as 
heterogeneity between 
models increases [1].

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, 
and active learning. NIPS 1994:7

Pseudo label

Model 1

Model 2

Augment

Augment

Prediction

Supervised

Input
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Cross Pseudo Supervision (CPS)

Input

Model 1

Model 2

Augment

Strong Augmented 
Sample Process

Weakly Augmented 
Sample Process

Cross Supervision 
Process

Augment

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, 
and active learning. NIPS 1994:7

Pseudo labelPrediction

Supervised

• Two different networks make 
predictions on different 
augmentations of the same 
image to generate pseudo-
labels.

• One pseudo-label serves as 
training data for the other 
model.

• Cross Pseudo allows use in 
cases without labels, and 
accuracy improves as 
heterogeneity between 
models increases [1].
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Cross Pseudo Supervision (CPS)

Strong Augmented 
Sample Process

Weakly Augmented 
Sample Process

Cross Supervision 
Process

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, 
and active learning. NIPS 1994:7

Pseudo label

Model 1

Model 2

Augment

Augment

Prediction

Supervised

Input

• Two different networks make 
predictions on different 
augmentations of the same 
image to generate pseudo-
labels.

• One pseudo-label serves as 
training data for the other 
model.

• Cross Pseudo allows use in 
cases without labels, and 
accuracy improves as 
heterogeneity between 
models increases [1].
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Cross Pseudo Supervision (CPS)

Strong Augmented 
Sample Process

Weakly Augmented 
Sample Process

Cross Supervision 
Process

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, 
and active learning. NIPS 1994:7

Pseudo label

Model 1

Model 2

Augment

Augment

Prediction

Supervised

Input

Heterogeneity
is needed

• Two different networks make 
predictions on different 
augmentations of the same 
image to generate pseudo-
labels.

• One pseudo-label serves as 
training data for the other 
model.

• Cross Pseudo allows use in 
cases without labels, and 
accuracy improves as 
heterogeneity (異質性)
between models increases [1].
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Heterogeneity (異質性)

Heterogeneity
The diversity of features extracted by different models 
from the images [1].

Method to enhance heterogeneity
• Train different models with category-specific weights.

• Amplify the differences between input images using 
different augmentation methods. 

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image 
segmentation." International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.
[2] Chen, Yifei, et al. "Semi-supervised Medical Image Segmentation Method 
Based on Cross-pseudo Labeling Leveraging Strong and Weak Data 
Augmentation Strategies." arXiv preprint arXiv:2402.11273 (2024).

DHC [2] DFCPS [3]

Using different data augmentationsTrain different models with category-specific weights.
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• The imbalance in category-wise 
voxel counts

The category-wise voxel-count on 
Organ-Segmentation dataset BTCV [1]

[1] Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: 2015 MICCAI Multi-Atlas 
Labeling Beyond Cranial Vault—Workshop Challenge (2015)

Category imbalance

Train different models with category-specific weights
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• The imbalance in category-wise 
voxel counts

• The imbalance in category-wise 
difficulty

The category-wise Dice of full-
supervision on organ segmentation 
dataset BTCV using U-Net[1]

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image 
segmentation." International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.

Category imbalance

Train different models with category-specific weights
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• Category-wise voxel counts and
Category-wise difficulty are
different

• Using Category-wise voxel 
counts based weight and
category-wise difficulty based 
weight to train different models

Category imbalance
Comparison of category-wise difficulty ranking 
(inverse) and Voxel count ranking in CHD [1].

Xu, X., Wang, T., Shi, Y., Yuan, H., Jia, Q., Huang, M., Zhuang, J.: Whole heart and 
great vessel segmentation in congenital heart disease using deep neural networks 
and graph matching. In: MICCAI, Proceedings, Part II, LNIP, vol. 11765, pp. 477–
485 (2019). Springer

Train different models with category-specific weights
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Problem we aiming to solve

The lack of the data Dual-Network framework (CPS)

Category-wise imbalance The lack of 異質性

Train different models with 
category-specific weights

Applying different augmentation 
for the same image as the input
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Category-wise voxel counts based weight (DisW) 𝑾𝒅𝒊𝒔[1,2]

Category-wise voxel counts in 
iteration 𝑡

Counts: 𝐴𝑡 = a𝑡,𝑐 | c = 1,2, … 𝐾

K: the total number of categories

𝑟𝑡,𝑐 =
max 𝐴𝑡

a𝑡,𝑐

Inverse voxel ratios of 
category 𝑐 in iteration 𝑡

Voxel counts based weight 
of category 𝑐 in iteration 𝑡

𝑤𝑡,𝑐
𝑑𝑖𝑠 =

log 𝑟𝑡,𝑐

𝑚𝑎𝑥ρ∈{1,2,…,𝐾} log 𝑟𝑡,ρ

a𝑡,𝑐 𝑟𝑡,𝑐 a𝑡,𝑐 𝑟𝑡,𝑐 𝑤𝑡,𝑐
𝑑𝑖𝑠

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced semi-
supervised medical image segmentation." International Conference on Medical Image Computing and Computer-Assisted 
Intervention. Cham: Springer Nature Switzerland, 2023.
[2] Chen, H., Fan, Y., Wang, Y., Wang, J., Schiele, B., Xie, X., Savvides, M., Raj, B.: An embarrassingly simple baseline for 
imbalanced semi-supervised learning. arXiv preprint arXiv:2211.11086, 2023.

Train different models with category-specific weights
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Category-wise difficulty based weight (DifW) 𝒘𝒕,𝒄
𝒅𝒊𝒇

[1]

Category-wise 
Segmentation 
difficulty in 
iteration 𝑡

Well-learned speed [3] 

Dice score [2]              Use the Dice score for each category in each iteration as 
the difficulty evaluation criterion.

Use the rate of change in the Dice score (Population 
Stability Index, PSI) for each category as the 
difficulty evaluation criterion.

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced semi-supervised medical image 
segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.
[2]Sudre, Carole H., et al. "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations." Deep Learning in Medical Image 
Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, 
Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3. Springer International Publishing, 2017.
[3] Yurdakul, B.: Statistical properties of population stability index (psi). PhD thesis, Western Michigan University, 2018

Train different models with category-specific weights
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Train different models with category-specific weights

Category-wise difficulty based weight (DifW) 𝒘𝒕,𝒄
𝒅𝒊𝒇

Learning Speed 

Well-learned iterations speed

Not learned iterations speed

𝑠𝑡,𝑐
𝑙 = ෍

T=o

𝑡

𝐼Δ>0 ln
𝑑T,𝑐

𝑑T−1,𝑐

𝑠𝑡,𝑐
𝑢 = ෍

T=o

𝑡

𝐼Δ≤0 ln
𝑑T,𝑐

𝑑T−1,𝑐

𝑑T,𝑐: Dice score of category 𝑐 in iteration T

Learning speed (PSI) 

𝑠𝑡,𝑐 =
𝑠𝑡,𝑐

𝑢 + ϵ

𝑠𝑡,𝑐
𝑙 + ϵ

α

Δ = 𝑑𝑡,𝑐 − 𝑑𝑡−1,𝑐

α, ϵ: hyperparameters

Considering the Dice changes between iterations o and t

47



Category-wise difficulty based weight (DifW) 𝒘𝒕,𝒄
𝒅𝒊𝒇

Category-wise 
Segmentation 
difficulty in iter 𝑡

DHC [1]

Well-learned speed

Dice score 𝑑t,𝑐

𝑠𝑡,𝑐 =
𝑠𝑡,𝑐

𝑢 + ϵ

𝑠𝑡,𝑐
𝑙 + ϵ

α

𝒘𝒕,𝒄
𝒅𝒊𝒇

= 𝟏 − 𝒅𝒕,𝒄 𝒔𝒕,𝒄

Well learned 𝑠𝑡,𝑐
[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image 
segmentation." International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.

Train different models with category-specific weights
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Dice fluctuates significantly, making the training process unstable.

LAG

PA

Dice-based difficulty

Issues in

𝒘𝒕,𝒄
𝒅𝒊𝒇

Train different models with category-specific weights

49



Changes in Confidence can smoothly reflect the difficulty level of each category [1].

LAG

PA

Soluation 

Proposed 𝒘𝒕,𝒄
𝒄𝒅𝒊𝒇

Dice-based difficulty

[1] Qiu, J., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K.: Class-wise 
confidence-aware active learning for laparoscopic images 
segmentation. International Journalof Computer Assisted 
Radiology and Surgery 18(3), 473–482, 2023

Train different models with category-specific weights
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Train different models with category-specific weights

By combining Dice and Confidence [1], fluctuations become more stable.

LAG

PA

LAG

PA

Dice-based difficulty Confidence-based difficulty

Soluation 

Proposed 𝒘𝒕,𝒄
𝒄𝒅𝒊𝒇
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Propose: Confidence-Difficulty Weight (CDifW)  𝒘𝒕,𝒄
𝒄𝒅𝒊𝒇

Prediction map 𝐏𝑡

Category-wise position on Ground Truth

𝐉𝑡 = 𝐉𝑡,𝑐 | c = 1,2, … 𝐾

Category-wise voxel counts on Ground Truth

𝐙𝑡 = 𝑧𝑡,𝑐 | c = 1,2, … 𝐾

Category-wise average 
Confidence 𝑟

𝑟𝑡,𝑐 =
1

𝑧𝑡,𝑐
෍

𝑗∈𝐽𝑡,𝑐

𝑝𝑐,𝑗

The information score 𝑖 [1] of  
Category-wise average Confidence 𝑟

= 𝑖𝑡,𝑐

1 − 𝑟𝑡,𝑐

max
𝑐∈{1,2,…𝐾}

1 − 𝑟𝑡,𝑐

[1] Qiu, J., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K.: Class-wise confidence-aware active learning for laparoscopic images 
segmentation. International Journalof Computer Assisted Radiology and Surgery 18(3), 473–482, 2023

Train different models with category-specific weights
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Propose: Confidence-Difficulty Weight (CDifW)  𝒘𝒕,𝒄
𝒄𝒅𝒊𝒇

Category-wise 
Segmentation 
difficulty in 
iteration 𝑡

Well-learned speed

Dice score 𝑑t,𝑐

𝑠𝑡,𝑐 =
𝑠𝑡,𝑐

𝑢 + ϵ

𝑠𝑡,𝑐
𝑙 + ϵ

α

𝒘𝒕,𝒄
𝒄𝒅𝒊𝒇

= 𝑖𝑡,𝑐
𝛽

𝟏 − 𝒅𝒕,𝒄 𝒔𝒕,𝒄Confidence score 𝑖𝑡,𝑐

𝛽:hyperparameter

Train different models with category-specific weights
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Train different models with category-specific weights

Input

Model 1

Model 2

Augmentation 1

Low Frequency Process High Frequency Process Cross Supervision Process

Pseudo 
label 𝒚1

Pseudo 
label 𝒚2

Prediction
𝒑1

Prediction
𝒑2

Ground 
Truth

𝒚

𝐿1

unsup

𝐿2

unsup

Supervise with ground Truth
(Only for annotated data)

𝐿1

sup

𝐿2

sup

𝑤𝑡,𝑐
𝑑𝑖𝑠

𝑤𝑡,𝑐
𝑐𝑑𝑖𝑓

Augmentation 2

Pseudo labelPrediction
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Problem we aiming to solve

The lack of the data Dual-Network framework (CPS)

Category-wise imbalance The lack of 異質性

Train different models with 
category-specific weights

Applying different augmentation 
for the same image as the input

Difficulty based DifW Distribution based DisW

Difficulty-Confidence based CDifW
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Different image augmentations

Related works

Weak Augmentations
• Gaussian Noise
• Gamma Correction
• Gaussian Blur
etc.

Strong Augmentations
• CutOut [1]
• CutMix [2]
• ClassMix [3]
etc.

•Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6023

Differences

Imbalance
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Propose：Double-Mix Pseudo Label (DMP)

Different image augmentations

EMA Model

Pseudo Label ො𝐲𝑢Unlabel data 𝐱u

Step 1 reference Pseudo Label ො𝐲𝑢 by EMA model  

Model

Weight update
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Weight aware category choice

𝐖
𝑐𝑑𝑖𝑓

or 𝐖𝑑𝑖𝑠Selected categories 𝐙

Class 1
Class 3
……
Class 𝒏

EMA Model

Pseudo Label ො𝐲𝑢Unlabel data 𝐱u

Propose：Double-Mix Pseudo Label (DMP)

Different image augmentations

Step 2 Select categories using category-wise weight (in this experiment, 𝐖
𝑐𝑑𝑖𝑓

or 𝐖𝑑𝑖𝑠)

The weight for category 𝑐 represents the probability of 
this category being sampled.
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Weight aware category choice

𝐖
𝑐𝑑𝑖𝑓

or 𝐖𝑑𝑖𝑠Selected categories 𝐙

Class 1
Class 3
……
Class 𝒏

EMA Model

Pseudo Label ො𝐲𝑢Unlabel data 𝐱u

Propose：Double-Mix Pseudo Label (DMP)

Different image augmentations

Step 3 Generate category mask 𝐌 by selected categories 𝐙 and pseudo label ො𝐲𝑢

Generate category mask

Category mask 𝐌
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Propose：Double-Mix Pseudo Label (DMP)

Different image augmentations
Step 4 Generate mixed sample pair [𝐱𝑚, ො𝐲m]

element-wise product

add

Mixed sample pair [𝐱𝑚, ො𝐲m]

𝐱𝑚 ො𝐲m

Labeled data 𝐱l Ground-truth of labeled data 𝐲l

Category mask 𝐌

Unlabel data 𝐱u Pseudo Label ො𝐲𝑢

Category mask 𝐌

Category mask 𝟏 − 𝐌
Category mask 𝟏 − 𝐌

𝐱𝑚 = 𝐱𝑢 ⊙ 𝐌 + 𝐱𝑙 ⊙ 1 − 𝐌

ො𝐲𝑚 = ො𝐲𝑢 ⊙ 𝐌 + 𝐲𝑙 ⊙ 1 − 𝐌

Mixed sample pair [𝐱𝑚, ො𝐲m] 

Unlabeled data 𝐱u

Pseudo label ො𝐲𝑢

Labeled data 𝐱l

Ground truth 𝐲𝑙
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Different image augmentations

Propose：Double-Mix Pseudo-label (DMP)

EMA Model መ𝑓𝐴

Input: 𝐱𝑙 , 𝐱𝑢

label:  𝐲𝑙 

EMA Model መ𝑓𝐵

EMA
Logit

Label A

EMA 
Logit

Label B

Double-mix A Double-mix B

Remixed 
label: 𝒚𝐵

𝑚
Remixed 
image: 𝒙𝐵

𝑚

Remixed 
image:𝒙𝐴

𝑚
Remixed 
label: 𝒚𝐴

𝑚

𝐱𝑙 , 𝐱𝑢, 𝐲𝑙𝐱𝑙 , 𝐱𝑢, 𝐲𝑙

𝐱𝑢
𝐱𝑢

Generated sample pairs A Generated sample pairs B

Model 𝑓𝐴 Model 𝑓𝐵

𝐖
𝑐𝑑𝑖𝑓 𝐖𝑑𝑖𝑠

Generate mixed sample pairs [𝒚𝐴
𝑚, 𝒙𝐴

𝑚] and [𝒚𝐵
𝑚, 𝒙𝐵

𝑚] based on 𝐖
𝑐𝑑𝑖𝑓

and 𝐖𝑑𝑖𝑠

𝑓𝐴, 𝑓𝐵:Segmentation models
መ𝑓𝐴, መ𝑓𝐵: EMA models of 𝑓𝐴, 𝑓𝐵
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Different image augmentations

Related works

Weak Augmentations
• Gaussian Noise
• Gamma Correction
• Gaussian Blur
etc ..

Strong Augmentations
• CutOut [1]
• CutMix [2]
• ClassMix [3]
etc ..

•Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6023

Differences

Imbalance

Double-Mix Pseudo Label
• Used different weights 

for data augmentation
• Considered category-

wise imbalance 

Proposed method
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Problem we aiming to solve

The lack of the data Dual-Network framework (CPS)

Category-wise imbalance The lack of 異質性

Train different models with 
category-specific weights

Applying different augmentation 
for the same image as the input

Difficulty based DifW Distribution based DisW

Difficulty-Confidence based CDifW

Double-Mix Pseudo Label
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• Step1: Calculate 𝐖𝒕
𝑐𝑑𝑖𝑓

and 𝐖𝒕
𝑑𝑖𝑠

• Step2: Update the EMA models and Generate pseudo label of unlabeled 
dataෝ𝐲𝐴

𝑢, ෝ𝐲𝐵
𝑢

• Step3: Generate DMP sample pairs [𝐲𝐴
𝑚, 𝐱𝐴

𝑚] and [𝐲𝐵
𝑚, 𝐱𝐵

𝑚] by DMP, using 

[𝐖𝒕
𝑐𝑑𝑖𝑓

, 𝐱l , 𝐲𝑙, 𝐱𝑢 ,ෝ𝐲𝐴
𝑢]and [𝐖𝒕

𝑑𝑖𝑠, 𝐱l , 𝐲𝑙, 𝐱𝑢 ,ෝ𝐲𝐵
𝑢], respectively 

• Step4: Calculate the unsupervision loss of sample pairs 

Double-Mix Pseudo Label Framework (DMPF) (in iteration 𝒕)
𝑓𝐴, 𝑓𝐵:Segmentation models
መ𝑓𝐴, መ𝑓𝐵: EMA models of 𝑓𝐴, 𝑓𝐵

𝐿𝑆𝑒𝑔
𝑠𝑢𝑝

(𝐖, 𝐱, 𝐲) = 𝐿𝐷𝑖𝑐𝑒 (𝐖, 𝐱, 𝐲)+
1

2
𝐿𝐶𝐸 𝐖, 𝐱, 𝐲

𝐿𝑆𝑒𝑔
𝑢𝑛𝑠𝑢𝑝

𝐖, 𝐱, 𝐲 = 𝐿𝐶𝐸 𝐖, 𝐱, 𝐲

𝐿𝐶𝐸: weighted Cross Entropy loss

𝐿𝐷𝑖𝑐𝑒: weighted Dice loss

𝐿𝑚
𝑢𝑛𝑠𝑢𝑝

= 𝐿𝑆𝑒𝑔
𝑢𝑛𝑠𝑢𝑝

(𝐖𝒕
𝑐𝑑𝑖𝑓

, 𝑓𝐴(𝒙𝐴
𝑚), 𝒚𝐴

𝑚) + 𝐿𝑆𝑒𝑔
𝑢𝑛𝑠𝑢𝑝

(𝐖𝒕
𝑑𝑖𝑠 , 𝑓𝐵(𝒙𝐵

𝑚), 𝒚𝐵
𝑚)
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• Step5: Calculate the supervision loss

• Step6: Calculate the unsupervision loss of unlabeled sample pairs  

• Step7: Calculate the total loss and optimize the models 

Double-Mix Pseudo Label Framework (DMPF) (in iteration 𝒕)

𝐿
𝑠𝑢𝑝

= 𝐿𝑆𝑒𝑔
𝑠𝑢𝑝

(𝐖𝒕
𝑐𝑑𝑖𝑓

, 𝑓𝐴(𝒙𝑙 ), 𝒚𝑙 ) + 𝐿𝑆𝑒𝑔
𝑠𝑢𝑝

(𝐖𝒕
𝑑𝑖𝑠 , 𝑓𝐵(𝒙𝑙 ), 𝒚𝑙 )

𝐿𝑢
𝑢𝑛𝑠𝑢𝑝

= 𝐿𝑆𝑒𝑔
𝑠𝑢𝑝

(𝐖𝒕
𝑐𝑑𝑖𝑓

, 𝑓𝐴(𝒙𝑢 ), ෝ𝐲𝐵
𝑢) + 𝐿𝑆𝑒𝑔

𝑠𝑢𝑝
(𝐖𝒕

𝑑𝑖𝑠 , 𝑓𝐵(𝒙𝑙 ), ෝ𝐲𝐴
𝑢)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿
𝑠𝑢𝑝

+ 𝐿𝑚
𝑢𝑛𝑠𝑢𝑝

+ 𝜃𝐿𝑢
𝑢𝑛𝑠𝑢𝑝 𝜃: Hyperparater
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EMA Model መ𝑓𝐴

Input: 𝐱𝑙 , 𝐱𝑢

Label:  𝐲𝑙  

EMA Model መ𝑓𝐵

EMA

Logits

ෝ𝐲𝐴
𝑢

EMA 

Logits

ෝ𝐲𝐵
𝑢

Double-Mix A Double-Mix B

Mixed label: 𝐲𝐵
𝑚Mixed image: 𝐱𝐵

𝑚Mixed image: 𝐱𝐴
𝑚Mixed label: 𝐲𝐴

𝑚

Weight A Weight B

𝐱𝑙 , 𝐱𝑢, 𝐲𝑙𝐱𝑙 , 𝐱𝑢, 𝐲𝑙

𝐱𝑢𝐱𝑢

Infer without gradient Double-mix process CPS framework training Apply the weight distribution

𝐄
መ𝑓𝐵𝐄

መ𝑓𝐴

DMP Modules

Generate DMP using 2 different weights (Step. 1-3)

66



EMA Model መ𝑓𝐴

Model 𝑓𝐴

Pseudo

Label

ො𝐲𝐴

Pseudo

Label 

ො𝐲𝐵

Logits

𝐩𝐴

Logits

𝐩𝐵

Input: 𝐱𝑙 , 𝐱𝑢

Label:  𝐲𝑙  

EMA Model መ𝑓𝐵

EMA

Logits

ෝ𝐲𝐴
𝑢

EMA 

Logits

ෝ𝐲𝐵
𝑢

Double-Mix A Double-Mix B

𝐿𝐴
𝑠𝑒𝑔

𝐿𝐵
𝑢𝐿𝐴

𝑢

𝐿𝐵
𝑠𝑒𝑔

Mixed label: 𝐲𝐵
𝑚Mixed image: 𝐱𝐵

𝑚Mixed image: 𝐱𝐴
𝑚Mixed label: 𝐲𝐴

𝑚

𝐿𝐴
𝑚𝑖𝑥 𝐿𝐵

𝑚𝑖𝑥

Model 𝑓𝐵

Weight A Weight B

𝐱𝑙 , 𝐱𝑢, 𝐲𝑙𝐱𝑙 , 𝐱𝑢, 𝐲𝑙

𝐱𝑢𝐱𝑢

𝐲𝑙
𝐲𝑙

𝒙𝑙 𝐱𝑙

Infer without gradient Double-mix process CPS framework training Apply the weight distribution

𝐄𝑓𝐵𝐄𝑓𝐴

𝐄
መ𝑓𝐵𝐄

መ𝑓𝐴

CPS Framework

Mixed

Logits A
Mixed

Logits B

DMP Modules

Calculate losses using labeled and generated data (Step. 4-7)
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Experiment setting

• Datasets

CHD [1]

Whole heart and great vessel segmentation 

Training set: 88

Validation set: 11

Test set: 11

BTCV [2] (腹部臓器)

Abdominal Organ Segmentation Dataset

Training set: 20

Validation set: 4

Test set: 6

Labeled  data

Unlabeled  data

Validation set

Test set

Training set

[1] Xu, X., Wang, T., Shi, Y., Yuan, H., Jia, Q., Huang, M., Zhuang, J.: Whole heart and great 
vessel segmentation in congenital heart disease using deep neural networks and graph 
matching. In: MICCAI, Proceedings, Part II, LNIP, vol. 11765, pp. 477–485, 2019
[2] Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: 2015 MICCAI Multi-
Atlas Labeling Beyond Cranial Vault—Workshop Challenge, 2015
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Experiment setting

臓器の英和対照
•脾臓 (Sp)
•右腎臓 (RK)
•左腎臓 (LK)
•胆嚢 (Ga)
•食道 (Es)
•肝臓 (Li)
•胃 (St)
•大動脈 (Ao)
•下大静脈 (IVC)
•門脈・脾静脈 (PSV)
•膵臓 (Pa)
•右副腎 (RAG)
•左副腎 (LAG) 

心臓構造の英和対照
•左心室 (LV)
•右心室 (RV)
•左心房 (LA)
•右心房 (RA)
•心筋 (Myo)
•大動脈 (Ao)
•肺動脈 (PA)
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Experiment setting

• Model Training

Training Settings:

3 random seeds, trained 3 times.

Segmentation Model:

5-layer V-Net [1].

Data Augmentation:

Gaussian noise, random flip, random rotation, 
random crop

[1] Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: Fully convolutional neural networks for volumetric 
medical image segmentation. In: 3DV, pp. 565–571, 2016. IEEE 

• Details

V-Net
kernel numbers: 

[32, 64, 128, 256, 512] in encoder and decoder

Input patch size:

(128, 128, 64) 

Metrics
Dice score 

Average Surface Distance (ASD)
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Experiment setting

• Mainstream Approaches

SS-Net [1]

DST [2]

Depl [3]

CPS [4]

CReST [5]

CLD [6]

DHC (DisW + DifW) [7]

Ours w/o DMP (DisW + CDifW)

Ours (DisW + CDifW + DMP)

[1] Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and classseparation for semi-supervised 
medical image segmentation. In: MICCAI, LNCS, vol. 13435, pp. 34–43 (2022). Springer 
[2] Chen, B., Jiang, J., Wang, X., Wan, P., Wang, J., Long, M.: Debiased self-training for semi-supervised 
learning. In: NeurIPS, vol. 35, pp. 32424–32437 (2022)
[3] Wang, X., Wu, Z., Lian, L., Yu, S.X.: Debiased learning from naturally imbalanced pseudo-labels. In: 
CVPR, pp. 14647–14657 (2022)
[4] Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo 
supervision. In: CVPR, pp. 2613–2622 (2021)
[5] Wei, C., Sohn, K., Mellina, C., Yuille, A., Yang, F.: CReST: A class-rebalancing self-training framework 
for imbalanced semi-supervised learning. In: CVPR, pp. 10857–10866 (2021) 
[6] Lin, Y., Yao, H., Li, Z., Zheng, G., Li, X.: Calibrating label distribution for classimbalanced barely-
supervised knee segmentation. In: MICCAI, LNCS, vol. 13438, pp. 109–118 (2022). Springer
[7] Wang, H., Li, X.: DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced 
semi-supervised medical image segmentation. In: MICCAI, LNCS, vol. 14222, pp. 582–591 (2022). 
Springer
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Result on using 5% labeled CHD dataset

• The proposed method achieves higher 
average accuracy than related methods.

Method Average Dice ASD

SS-Net 49.7 7.9

DST 62.3 5.6

Depl 63.6 5.1

CPS 62.0 5.5

CReST 61.5 6.4

CLD 62.4 5.9

DHC 64.1 6.7

Ours w/o DMP 64.3 6.0

Ours 66.5 6.0
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Result on using 5% labeled CHD dataset Voxel Rate: 7.5%

Voxel Rate: 10.7%

Voxel Rate: 9.5%

• The proposed method achieves higher 
accuracy for categories with fewer voxels 
compared to related methods.
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Result on using 5% labeled CHD dataset

The proposed method achieves better segmentation accuracy, especially in 
challenging categories (PV, RA, Ao).
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Result on using 40% labeled BTCV dataset

• The proposed method achieves higher accuracy for categories with fewer voxels compared 
to conventional methods.

Methods
Average Dice and ASD Low Voxel count category

Dice (%) ASD Es (0.49%) RAG (0.14%) LAG (0.17%)

SS-Net 42.5±6.5 49.2±10.1 0 0 0

DST 40.1±0.9 46.8±2.2 0 0 0

Depl 41.2±0.9 48.1±0.5 0 0 0

CPS 37.5±2.1 52.5±11.1 0 0 0

CReST 38.5±3.8 22.1±8.7 21.2 18.1 9.5

CLD 54.7±1.2 7.6±0.6 28.7 25.3 27

DHC 59.6±1.2 4.5±0.6 44.8 33.1 40.9

ours w/o DMP 60.0±0.7 3.9±0.5 45.8 28.9 50.5

ours 61.2±0.7 4.06±0.6 48.5 36.4 48
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Result on using 40% labeled BTCV dataset

The proposed method achieves 
better segmentation accuracy, 
especially in challenging 
categories (Es, RAG, LAG).
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Results on using different ratio labeled dataset

Our method has advantages when using a smaller amount of annotated data.

Results using different percentages of labeled-data. (a) BTCV, (b) CHD
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Significance test

The result of Wilcoxon signed-rank test. (a) The results using 10%, 20%, and 40% of the BTCV dataset as the labeled data, (b) the results using 
5%, 10%, and 20% of the CHD dataset as the labeled data

Our method achieved p-values less than 0.05 across multiple 
splits on two datasets, demonstrating its effectiveness.
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The effect of using two distinct category-wise weights in model training

Methods Dice (%) ASD
DisW-DifW 29.8±5.4 28.1±8.5

CDifW-DisW 29.9±2.7 25.3±8.3
CDifW-CDifW 26.4±2.8 25.2±3.5
CDifW-CDisW 29.4±2.6 27.3±3.4

DisW-DisW 26.2±4.7 32.2±5.0
CDisW-CDisW 28.9±2.6 25.5±4.4

CDisW: 𝑤𝑡,𝑐
𝐶𝐷𝑖𝑠𝑊 = 𝑖𝑡,𝑐

𝛽
𝑤𝑡,𝑐

𝑑𝑖𝑠𝑤

Confidence information score in 𝑤𝑡,𝑐
𝑐𝑑𝑖𝑓𝑤

The results of training CPS module using different 
weights on 10% labeled BTCV dataset.

CDifW: Confidence + Difficulty score 
CDifW: Confidence + Distribution score
DisW: Distribution score             DifW: Difficulty score

79



The effect of using two distinct category-wise weights in model training

CDisW: 𝑤𝑡,𝑐
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𝛽
𝑤𝑡,𝑐

𝑑𝑖𝑠𝑤

Confidence information score in 𝑤𝑡,𝑐
𝑐𝑑𝑖𝑓𝑤

• Using the same weights fails to account for 
category-specific differences, resulting in 
performance degradation (e.g., CDifW-CDifW, 
DisW-DisW).

Methods Dice (%) ASD
DisW-DifW 29.8±5.4 28.1±8.5

CDifW-DisW 29.9±2.7 25.3±8.3
CDifW-CDifW 26.4±2.8 25.2±3.5
CDifW-CDisW 29.4±2.6 27.3±3.4

DisW-DisW 26.2±4.7 32.2±5.0
CDisW-CDisW 28.9±2.6 25.5±4.4

The results of training CPS module using different 
weights on 10% labeled BTCV dataset.

CDifW: Confidence + Difficulty score 
CDifW: Confidence + Distribution score
DisW: Distribution score             DifW: Difficulty score
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The effect of using two distinct category-wise weights in model training

CDisW: 𝑤𝑡,𝑐
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𝛽
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𝑑𝑖𝑠𝑤

Confidence information score in 𝑤𝑡,𝑐
𝑐𝑑𝑖𝑓𝑤

• Using the same weights fails to account for 
category-specific differences, resulting in 
performance degradation (e.g., CDifW-CDifW, 
DisW-DisW).

• CDisW improves performance by considering 
difficulty and distribution (CDisW-CDisW
outperforms DisW-DisW).

Methods Dice (%) ASD
DisW-DifW 29.8±5.4 28.1±8.5

CDifW-DisW 29.9±2.7 25.3±8.3
CDifW-CDifW 26.4±2.8 25.2±3.5
CDifW-CDisW 29.4±2.6 27.3±3.4

DisW-DisW 26.2±4.7 32.2±5.0
CDisW-CDisW 28.9±2.6 25.5±4.4

The results of training CPS module using different 
weights on 10% labeled BTCV dataset.

CDifW: Confidence + Difficulty score 
CDifW: Confidence + Distribution score
DisW: Distribution score             DifW: Difficulty score
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The effect of using two distinct category-wise weights in model training

CDisW: 𝑤𝑡,𝑐
𝐶𝐷𝑖𝑠𝑊 = 𝑖𝑡,𝑐

𝛽
𝑤𝑡,𝑐

𝑑𝑖𝑠𝑤

Confidence information score in 𝑤𝑡,𝑐
𝑐𝑑𝑖𝑓𝑤

• Using the same weights fails to account for 
category-specific differences, resulting in 
performance degradation (e.g., CDifW-CDifW, 
DisW-DisW).

• CDisW improves performance by considering 
difficulty and distribution (CDisW-CDisW
outperforms DisW-DisW).

• CDifW-CDisW has lower heterogeneity due to 
the introduction of confidence on both sides, 
resulting in lower accuracy compared to CDifW-
DisW.

異質性の高い重みほど望ましい
The higher the heterogeneity of the 
weights, the more desirable it is.

Methods Dice (%) ASD
DisW-DifW 29.8±5.4 28.1±8.5

CDifW-DisW 29.9±2.7 25.3±8.3
CDifW-CDifW 26.4±2.8 25.2±3.5
CDifW-CDisW 29.4±2.6 27.3±3.4

DisW-DisW 26.2±4.7 32.2±5.0
CDisW-CDisW 28.9±2.6 25.5±4.4

The results of training CPS module using different 
weights on 10% labeled BTCV dataset.

CDifW: Confidence + Difficulty score 
CDifW: Confidence + Distribution score
DisW: Distribution score             DifW: Difficulty score
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Compasion with other strong augmentation methods 

Methods Dice (%) ASD
CDifW-DisW 29.9±2.7 25.3±8.3
CutMix [1] 31.5±2.6 20.4±5.8
CutOut [2] 30.9±3.7 24.5±6.8
ClassMix[3] 29.3±8.3 33.1±7.0

Ours 35.7±1.0 18.2±4.3

Comparsion with other strong data augmentations on 
10% labeled BTCV dataset. All the experiments are 
applied CDifW-DisW

[1] DeVries, T., & Taylor, G. W. (2017). Improved Regularization of 
Convolutional Neural Networks with Cutout. arXiv preprint 
arXiv:1708.04552.
[2] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix: 
Regularization Strategy to Train Strong Classifiers with Localizable 
Features. In Proceedings of the IEEE/CVF International Conference on 
Computer Vision (ICCV), pp. 6023-6032.
[3] Olsson, V., Tranheden, W., Pinto, J., & Svensson, L. (2021). ClassMix: 
Segmentation-based Data Augmentation for Semi-Supervised Learning. In 
Proceedings of the IEEE/CVF Winter Conference on Applications of 
Computer Vision (WACV), pp. 1369-1378.

It is crucial to perform image 
augmentation targeted at category 
imbalance.

• Our method considers category-wise 
imbalance, making it superior to other 
strong data augmentation methods.

• ClassMix augmented the images without 
considering the category-wise weights, 
caused performance reduce
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Performance on balanced dataset

• Colon Segmentation Task (based on WRAMC [1])
• 2 balance categories: Air area and Solid Material
• 10 Labeled cases, 3-fold cross validation

Our CDifW-DisW is 
better  than DifW-
DisW.

After using DMP, a 
decline in accuracy 
was observed.

[1] Long, J.R., Frew, M.I., Brazaitis, M.P.: Virtual colonoscopy in the US army: current utilization at the 
Walter Reed Army Medical Center. Abdominal Imaging 36, 149–152 (2011). Springer
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Performance on balanced dataset

Applying the DMP module 
(CDifW-DisW+DMP) to the 
balanced dataset likely 
compromises some spatial 
information, resulting in 
reduced performance.

On a simple and balanced 
dataset, overly strong data 
augmentation may not be 
necessary.
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Discussion

86

◆What issues did we face in this study?

➢ CT segmentation requires extensive pixel-level annotated data, which is high-cost.

➢ The category-wise weight is not stable, may cased performance increasing

➢ Augmentation methods don’t consider class imbalance, leading to poor performance for 
challenging categories.
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➢ The category-wise weight is not stable, may cased performance increasing

➢ Augmentation methods don’t consider class imbalance, leading to poor performance for 
challenging categories.

◆What methods we proposed to address above issues?

➢ Proposed Confidence-Difficulty Weight (CDifW) to balance training across classes 
based on confidence and Dice score.

➢ Introduced Double-Mix Pseudo-label Framework (DMPF) to augment images based 
on class distribution and difficulty, enhancing segmentation for challenging categories.



Discussion
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◆What issues did we face in this study?

➢ CT segmentation requires extensive pixel-level annotated data, which is high-cost.

➢ The category-wise weight is not stable, may cased performance increasing

➢ Augmentation methods don’t consider class imbalance, leading to poor performance for 
challenging categories.

◆What methods we proposed to address above issues?

➢ Proposed Confidence-Difficulty Weight (CDifW) to balance training across classes 
based on confidence and Dice score.

➢ Introduced Double-Mix Pseudo-label Framework (DMPF) to augment images based 
on class distribution and difficulty, enhancing segmentation for challenging categories.

◆What are the limitations of our method?

➢ DMP module introduces noise in balanced datasets by potentially disrupting spatial 
information.

➢ The practicality of the results needs to be evaluated by clinicians.



Conclusions and Foreseeing
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Summary of the topics
◆High annotation cost in data annotation for medical image segmentation

◆Since endoscopic data differs from CT data, we proposed two approaches 
tailored to each data type, to solve this problem

➢ Train laparoscopic video segmentation model with limited Pixel-Level annotated data and 
abundant category-Level annotated data (Topic 1)

➢ Train CT segmentation model with limited Pixel-Level annotated data and abundant non-
annotated data (Topic 2)

◆Provide successful solutions to two important tasks in medical image 
segmentation with  low annotations cost

Main limitations:

➢ Still need annotated data in model training (Topic 1)

➢ Performance reduce in simple and balanced dataset (Topic 2)
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Issues to be Solved

◆Can we finetuning the large pre-trained models (Totalsegmentator, MedSAM, 
etc.) to further reduce the cost of required annotations?
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◆How can annotation cost be quantified and used as a standard for model 
evaluation? 
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Issues to be Solved

◆Can we finetuning the large pre-trained models (Totalsegmentator, MedSAM, 
etc.) to further reduce the cost of required annotations?

◆How can annotation cost be quantified and used as a standard for model 
evaluation? 

◆The results should be confirmed by clinical doctors to evaluate the clinical 
significance of our method.
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