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Overview

* Background and Introduction

* Topicl

Towards better laparoscopic video
segmentation: A class-wise contrastive learning
approach with multi-scale feature extraction.

* Topic2

Double-Mix Pseudo-Label Framework:
Enhancing Semi-Supervised Segmentation on
Category-Imbalanced CT Volumes

e Conclusions and Foreseeing
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Background and Introduction
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Medical image segmentation

* Enables diagnosis using high-
precision CT images

e Supports surgery using high-
precision laparoscopic images

* Development of deep learning-based
segmentation systems is required

o —

“Tar &

%

=>

Segmentation from CT scans,Heart (Left), Abdominal Organs (Right)
Deep learning-based \

segmentation
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Time costs for annotation in 1 slice

. . . . A i CT | i
Challenge in medical image segmentation TP B e s
Category-level 5-15s 10-30s
No label 0 0

Wanying Shi, et al.

Problem:
* The need to create a large amount of annotated data

* |ncreasing annotation costs due to the growing number of medical images

* The need to train high-accuracy segmentation models with low-cost
annotations in and CT volume segmentation task

Creating labels requires expert knowledge and is time-consuming




Here begins our new MIRAI

/Z[™ NAGOYA UNIVERSITY -- MOONSHOT

[1] Li, Zihan, et al. “Scribblevc: Scribble-supervised medical
image segmentation with vision-class embedding.” ACM, 2023.
Re I ated Wo rks [2] Wei, Hongbin, et al. "Only Classification Head Is Sufficient
for Medical Image Segmentation." PRCV, 2023.
[3] Zeng, Dewen, et al. "Positional contrastive learning for
volumetric medical image segmentation." MICCAI, 2021.

Utilizing category annotations.
e Using multi-task training for feature optimization [1,2].
e Using contrastive learning task for model pre-training [3].

Scribble-Supervised Segmentation Semi-Supervised Segmentation Semi-Supervised Segmentation

Labeled Image Labeled Image Labeled Image Unlabeled Image Labeled Image Unlabeled Image

plefocloe

Dense Annotation Dense Annotation Dense Annotation | Category Annotation Dense Label No Label

Duodenum,
‘/";¢
R

Liver,
High annotation cost

intestine, etc

Low annotation cost 6
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[1] Yu, Lequan, et al. "Uncertainty-aware self-ensembling model
for semi-supervised 3D left atrium segmentation." MICCAI, 2019.
Re I ated Wo rks [2] Kimhi, Moshe, et al. "Semi-Supervised Semantic Segmentation
via Marginal Contextual Information." TMLR, 2024
[3] Chen, Xiaokang, et al. "Semi-supervised semantic
segmentation with cross pseudo supervision." CVPR. 2021.

Utilizing few labeled data and lots of unlabeled data.
* Employing EMA models for pseudo-label learning [1,2].
* Applying ensemble learning for cross-supervision [3].

Scribble-Supervised Segmentation Semi-Supervised Segmentation Semi-Supervised Segmentation

Labeled Image Labeled Image Labeled Image Unlabeled Image Labeled Image Unlabeled Image

o S g ey P
‘k \' 3 ) - (’ v ) - N v ) -

Dense Annotation Dense Annotation Dense Annotation | Category Annotation Dense Label No Label

Duodenum,
‘/";¢
R

Liver,
High annotation cost

intestine, etc

Low annotation cost .
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Aim of our study

Propose two different solutions for laparoscopic

and CT data. - Pixel-Level annotation
* Topicl

: p ' . . . “jb%”\ “HEFI*” “H*Hﬁ”
Train laparoscopic video segmentation model with “AERA7. “#F7. “REE"
limited pixel-Level annotated data and 77

abundant category-Level annotated data Category-Level annotation

* Topic2
Train CT segmentation model with

limited pixel-Level annotated data and

Volumes with annotation

abundant data without annotation
e Above all X
Training medical image segmentation models with

low annotation costs Volumes with no annotation
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Topic 1
Towards better laparoscopic video segmentation: A

class-wise contrastive learning approach with multi-scale
feature extraction.

Zhang, Luyang, et al. "Towards better laparoscopic video segmentation: A class-wise contrastive learning approach
with multi-scale feature extraction." Healthcare Technology Letters 11.2-3 (2024): 126-136.

9
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Background

CAS requires segmentation
* Evaluate the condition of organs and
tissues

e I|dentify the position and orientation of
surgical tools

Deep learning-based CAS system

* To train high-precision models, extensive
data annotation is necessary (a) CAS

Problem: (b) Laparoscopic images including tools and organs [1]

High annotation cost SUTBory The Koren Joormal of sutrommeroogye

Taehan Sohwagi Hakhoe chi 50.4 (2007): 256-259.

10
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Low-cost annotation

Solution:

Utilize data with low-cost annotations.
Motivation:

Train a segmentation model using

a small amount of pixel-level
annotated data and a large amount of
class-level annotated data.

P | 2 S N
BE" “HYAm”. “HeRh”. “iH
?l’\ IIHEEII 17 ‘ngl
FitgespE . “ABEDDEE"

Pixel-Level annotation Category-Level annotation

‘ Annotation cost High @ Low @

Red : Annotation
educe annotation costs. information Complete @ Incomplete @

11
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Data with pixel-level I Data without pixel-level

|

I

|
annotatio annotation |
NG
_— '
I

I

I

|

A

Multi-task training

Optimize the features extracted by the same |
segmentation model using multitasking. |
Main Task |
Segmentation Task |
* Input: Data with segmentation annotations |
* Label: Pixel-level annotations |
Subtasks I Main task
|
|
|
|
|
|

Se tati
gmentation Sub task
model

Classification Task

* Input: Data without segmentation annotations
* Label: Pixel-level annotations

Contrastive Learning Task

* Input: Positive pairs [
Objective of subtasks:

Optimize the extracted features |_Pixel-Level annotation | _Category-Level annotation:

‘ Feature Optimizing

'\

Class: “Black Background”,

“Abdominal Wa II” “Liver”,
“Fat”, “Gra p and
“Gallbladder’ G lIbladder
Dissec tion”

12
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Contrastive learning

Positive Pair (1E/5I) :Image pairs with similar information

Negative Pair: Image pairs with different information

Objective: Increase the similarity between features extracted from positive pairs
Decrease the similarity between features extracted from negative pairs

Input images Feature extraction features

Increase the

Positive pair similarity

Decrease the
similarity

Negative pair

13
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A novel positive pairs definition method in
Laparoscopic image segmentation task

2= : Positive pairs definition

* Images containing the same category are similar.

* Images captured at the same surgical stage,
with the same tools and organs, are set as

positive pairs. =
Surgical phases

Video A *_ I
Preparatlo Calot Triangle Dissection Gallbladder Dissection

Video B ——

Class: “Black Background”, “Abdominal Class: “Abdominal Wall”, “Liver”, “Fat”, “Grasper”, and
Wall”, “Liver”, “Fat”, in “Preparation” “Gallbladder”, “Black Background”, in “Gallbladder Dissection”
Positive Pairs Negative Pairs

14
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Feature Extraction in segmentation model

U-Net[1]
* A segmentation model for medical
images

e Structure of Encoder and Decoder Skip Connection

e Skip connections are applied to retain
information at each scale

Skip Connection

* Features extracted from each scale are
transferred to the Decoder

Optimization of features in each scale is

necessary

Encoder Decoder

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical
image segmentation,” in MICCAI 2015, LNIP 9351, 234-241, Springer (2015).

15
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$E3E : Multi-Scale Projection Head (MSPH)

o -

Projection Head [1,2,3]
*Maps high-dimensional features to a lower-
dimensional space.

Conv2d

*Used to calculate contrastive loss, bringing
features from positive pairs closer in the
projection space.

Multi-Scale Projection Head (MSPH)

*In the proposed MSPH, features from each
scale are mapped to a lower-dimensional
space.

BatchNorm

GlobalPooling

N e e e e e e -

Projection Head

*Enables optimization of features from Encoder

mu Itl p I e SCa Ies . [1] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations."” International conference on machine learning. PMLR, 2020.
[2] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020.
[3] Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021.

16
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0]
* Input the image pairs into the Q

0
model and extract features from  positive pair
each scale.

Multi-Scale Projection Head
Optimize features using sub-tasks

Contrastive Learning
* Create image pairs using class-
level labels.

* Perform contrastive learning
between features at each scale
for positive pairs.

Encoder

17
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Multi-Scale Projection Head
Optimize features using sub-tasks

Contrastive Learning
* Create image pairs using class-
level labels.

* Input the image pairs into the
model and extract features from  positive pair astive Loss |
each scale.

* Perform contrastive learning
between features at each scale
for positive pairs.

[ Classification ]
Projection Head

Classification Task “r
e Pass features through a Encoder Classification Label
classification projection head for Classification Task

classification learning.

18
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Ground

PEZE : Proposed method Truth

Segmentation task

Calculate segmentation loss on ‘ G
images with pixel-level annotations

Classification task Decoder
Calculate classification loss on - ——— = -
images Yvithout pixel-level Positive pair astive Loss_ '
annotations. ' '

Contrastive learning task
Calculate contrastive loss on
features extracted between
positive pairs using MSPH.

A 4

[ Classification ]
Projection Head

The model's loss is set as the sum Encoder Classification Label

of segmentation loss, classification 00
loss, and contrastive loss.

Multi-Scale Projection Head ~ Classification Task

19
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Loss function

Parameters

P: decoder output;

Segmentation task
LSeg — LGDL(P, g) + LFocal(P, g)

Classification task

Z: the features extracted by MSPH from positive L€ls = [CE(c,y)

pairs;

N: the count of positive pairs

¢ : the feature extracted by the classification
projection head

g, y: ground truth of classification and
segmentation.

LCE: Cross Entropy;

LFocal. Focal Loss [1];

L%PL . Generalized Dice Loss [2];

L*L Contrastive Supervision Loss [3] ;
a, 3: hyperparameter

Contrastive learning task
N

1P = 3 1°h(z,)

i=1

Proposed method

[all — jSeg 4 ] PCL 4 BLcls

[1] Lin, T. Y., Goyal, P, Girshick, R., He, K., & Dollar, P. (2017). Focal Loss for Dense Object Detection. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988.

[2] Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., & Jorge Cardoso, M. (2017). Generalised Dice overlap
as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support (pp. 240-248). Springer, Cham.

[3] Khosla, P., Teterwak, P., Wang, C., Sarna, A,, Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.:
Supervised contrastive learning. Advances in Neural Information Processing Systems 33 (2020)

20



/5% NAGOYA UNIVERSITY

Here begins our new MIRAI

~ MOONSHOT

RRRRRRRRRRRRRRRRRRRRRRRRRR

Experiment setting

* Datasets

— CholecSeg8k [1]

Laparoscopic images of
cholecystectomy from 17

videos, totaling 8,080 frames.

8 categories

»

[ ]
[7)

CholecSeg8k Ground-truth

[1] Hong, W-Y., et al., CholecSeg8k: A Semantic Segmentation Dataset for Laparoscopic
Cholecystectomy Based on Cholec80, arXiv preprint arXiv:2012.12453, 2020.

« Segmentation model

5 layers U-Net

| 512 x 512 |
| 48 x 512 x 512 |

Feature Map
Blocks

I 16 x 512 x 512 I

Conv2d 3X3
l Decoder Basic Block l

v0O

Long Connection (Concat)

I 48 x 512 x 512

Down Sample

| 96 x 256 x 256

ol
q | 96 x 512 x 512

Up Sample
Decoder Basic Block

4 192 x 256 x 256 I

Down Sample

| 192 x 128x 128 I

- —

Up Sample

Encoder Basic Block & Decoder Basic Block

384 x 128 x 128

Encoder Basic Block

Down Sample

L |

Down Sample
Up Sample

Max pooling 2X 2, stride = 2

'IJ 768 x 64x 64 I

| 384 x 64 x 64 |

Down Sample

| 768 x 32 x 32 |

Conv2d 3X3

Up Sample

Up Sample
l Decoder Basic Block l

ConvTranspose 3% 3, stride = 2

| 768 x 32 x 32 |
]

21
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Experiment setting
fRggeY—IL (Ch7dU—) DO=FIxTHR

Background (&)
«Abdominal Wall (5§ &)

Liver (BFHgE)

‘Fat(fERA)

Grasper ($8+rH+F)
«Connective Tissue ($5& #8#85%)
-L-hook Electrocautery (L= &
Gallbladder (fEZE)

d
X
W
2
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Experiment setting

* Mainstream Approaches

U-Net [1] Baseline
SimCLR [2]  Positive pairs are formed by using an image and its augmented version

Ours DCL Contrastive task + Segmentation task
Ours cls + Segmentation task
Ours DCL+cls Contrastive task + + Segmentation task

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in
MICCAI 2015, LNIP 9351, 234-241, Springer (2015).

[2] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on
machine learning. PMLR, 2020.

23
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Experiment result (I0U)

The performance of the proposed methods outperforms related methods,
especially in improving segmentation accuracy for small targets.

Pixel labeled

Abdominal

Connective

L-hook

Samples Background Wall Liver Fat Grasper Tissue Electrocautery Gallbladder

U-Net [1] 1% 0.953 = 0.004 0.519 #= 0.009 0.442 = 0.036 0.761 %= 0.005 0.157 = 0.006  0.007 = 0.009 0.132 =+ 0.005 0.241 = 0.021
5% 0.926 == 0.034  0.664 # 0.052 0.501 £ 0.045 0.796 = 0.024 0.326 £ 0.112 0.265 £ 0.063 0.310 £ 0.123 0.360 £ 0.078

10% 0.941 +0.008 0.612 =0.034 0.461 =0.023 0.767 = 0.004 0.226 £ 0.042 0.091 == 0.120 0.187 =0.132  0.335 =+ 0.038

SimCLR [2] 1% 0.905 + 0.012  0.482 £ 0.007 0.431 £0.023  0.742 = 0.004  0.188 £ 0.030  0.040 £ 0.027  0.200 = 0.057 0.210 =% 0.016
5% 0.901 = 0.008 0.558 == 0.018 0.464 %= 0.023 0.762 = 0.013 0.303 =0.014 0.009 £ 0.006 0.328 = 0.017 0.324 = 0.012

10% 0.932 £0.002 0.633 £0.015 0.403 =0.008 0.780 = 0.005 0.311 £ 0.030 0.342 =0.061 0.401 = 0.008 0.393 =+ 0.027

Ours DCL 1% 0.952 =+ 0.005 0.542 =0.048 0.519 = 0.017 0.755 = 0.000 0.154 = 0.020 0.096 = 0.071 0.128 +=0.148 0.252 = 0.019
5% 0.953 # 0.003 0.606 = 0.066  0.505 *+ 0.038 0.797 = 0.018 0.300 == 0.092 0.246 = 0.139 0.264 = 0.188 0.374 &= 0.111

10% 0.936 = 0.004 0.631 =0.024 0.484 =0.007 0.792 = 0.008 0.310 £ 0.059 0.305 = 0.098  0.420 = 0.059 0.421 =% 0.033

Ours cls 1% 0.955 + 0.000 0.534 = 0.034 0.494 =0.019 0.773 +0.016 0.192 & 0.004 0.053 == 0.047 0.001 = 0.001 0.262 =+ 0.028
5% 0.925 = 0.013 0.576 = 0.057 0.444 = 0.014 0.775 = 0.022 0.245 =+ 0.089 0.182 *+ 0.079 0.356 =+ 0.092 0.320 = 0.076

10% 0.945 £+ 0.005 0.657 = 0.025 0.485 = 0.016 0.796 = 0.019 0.341 £ 0.031 0.400 == 0.133  0.417 = 0.064  0.458 + 0.023

Ours DCL+cls 1% 0.952 +0.006 0.614 # 0.034 0.498 =0.019 0.762 = 0.005 0.178 £ 0.005 0.060 = 0.035 0.137 = 0.019 0.287 + 0.017
5% 0.944 +0.012 0.624 =0.023  0.438 =0.035 0.798 + 0.004 0.296 = 0.070  0.336 &= 0.031  0.338 = 0.046  0.365 =+ 0.027

10% 0.948 £ 0.013  0.638 = 0.019  0.485 = 0.008 0.791 = 0.009 0.407 = 0.016  0.404 % 0.042  0.405 =+ 0.032  0.447 =% 0.030

24
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Experiment result (I0U)

0.60 Average 10U for Different Methods and Sample Percentages
The proposed method Sample pereentage
) g 0.562 0.566

demonstrates high —

. . 0.55+ Bl 10%
accuracy with few pixel-
level labeled data (1% or

0.50+

5%), confirming its

effectiveness in situations
with limited data.

Average IOU
o
D
(6]

0.40

0.35-

0.30-

SimCLR [2]

Ours DCL

Ours cls Ours DCL+cls
Method

25
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2-Step Training

Step 1 Pretrain the
encoder by sub tasks

Positive pair

[ Classification ]
Projection Head

Encoder Classification Label

98 Multi-Scale Projection Head ~ Classification Task

26
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2-Step Training

Step 2 Freeze the Pretrained encoder and train the Decoder by segmentation task

l Pretrained Encoder

Decoder

Freeze

I Segmentation Loss |
TIAT—=2325RY

27
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Average loU for Different Methods
0.52

2-Step Training Result

0.51 A

0.50

o©
>
©

The performance of the proposed
methods outperforms related 2-step

Average loU

o
'S
Co

methods, especially in improving
segmentation accuracy for smaller targets.
0.45 T
SimCLR 2-stage BYOL Ours DCL Ours DCL+cls
Method
Background  Abdominal Wall Liver Fat Grasper Con.nect|ve Skl Gallbladder
Tissue Electrocautery

SimCLR [1] 2-stage| 0.921 £0.012 0.653 £ 0.005 0.528 + 0.021 0.773 £0.013 0.250 £ 0.020 0.206 £ 0.038 0.360 £ 0.021 0.389 +0.012

BYOL [2] 0.916 £ 0.015 0.651 £ 0.027 0.520 £ 0.025 0.776 £ 0.011 0.250+0.014 0.205 +0.037 0.359 £ 0.040 0.419 £ 0.018

Ours DCL 0.933 + 0.006 0.657 £ 0.034 0.522 +£0.010 0.779 £ 0.001 0.252 +0.015 0.219 + 0.037 0.354 +0.026 0.413 + 0.050

Ours DCL+cls 0.924 + 0.005 0.659 + 0.022 0.519 £ 0.015 0.779 £ 0.014 0.266 + 0.008 0.212 £ 0.026 0.368 + 0.032 0.407 £0.024

[1] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
[2] Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., Kavukcuoglu, K., Munos, R., & Valko, M.
(2020). Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning. In Advances in Neural Information Processing Systems (NeurlPS) 2020.

28
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Discussion
mDice using 1% and 10% data Ablation Study
weod | 10 | 10 [ cs Iwspil 1% | 0%
U-Net 0.389 0.453 X X 0.389 0.453
SimCLR 0.400 0.513 X 0] 0.425 0.537
Proposed 0.424 0.565 0] X 0.407 0.532
0] @) 0.424 0.565
Discussion
 The method we propose outperforms related works
Ground Truth SimCLR in the field.

* In cases involving categories that are closely related
or similar, our method demonstrates superior
capability in distinguishing and identifying each
category accurately.

Black Background
Abdominal Wall

Liver

Fat

Grasper

Connective Tissue
L-hook Electrocautery
Gallbladder

Bl

* The ablation studies validate the effectiveness of
each introduced improvement.

Random

29
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Discussion

€ What issues are we dealing with in this study?
® > Creating pixel-level annotation is expensive

® > Segmentation performance with limited annotations is not good

30
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Discussion

€ What issues are we dealing with in this study?
® > Creating pixel-level annotation is expensive

® > Segmentation performance with limited annotations is not good

€ How did we reduce the annotation cost?
» Employed a sub-task to enhance model training with low-cost annotations (category-wise

annotation)

» Proposed a novel positive pair definition method for contrastive learning in Laparoscopic image
segmentation task.

» Proposed a novel MSPH for multi-scale feature optimizing.

31
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Discussion

€ What issues are we dealing with in this study?
® > Creating pixel-level annotation is expensive

® > Segmentation performance with limited annotations is not good

€ How did we reduce the annotation cost?
» Employed a sub-task to enhance model training with low-cost annotations (category-wise

annotation)

» Proposed a novel positive pair definition method for contrastive learning in Laparoscopic image
segmentation task.

» Proposed a novel MSPH for multi-scale feature optimizing.

€ What are the limitations of our method?
» The results have not been evaluated by doctors, making it impossible to estimate their actual

significance in clinical practice.
» Category—level annotation still needs annotation costs, even it is low.

In the next topic, we will discuss another method to improve segmentation performance without

| level tati ] .

32
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Topic 2

Double-Mix Pseudo-Label Framework: Enhancing Semi-
Supervised Segmentation on Category-Imbalanced CT
Volumes

Zhang, Luyang, et al. "Double-mix pseudo-label framework: enhancing semi-supervised segmentation on category-imbalanced CT volumes." International Journal of Computer Assisted
Radiology and Surgery, doi:10.1007/s11548-024-03281-1

33
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Background

Automatic Abdominal Organ Segmentation from CT Images

* Enables accurate diagnosis using high-quality CT images.
* Increasing the number of CT images places a greater burden on radiologists.
 Developing a segmentation system using deep learning is essential to reduce this burden.

Semi-supervised Multi-organ Segmentation
* Itis challenging to obtain a large amount of annotated data.
* Semi-supervised learning using unlabeled image data is effective.

* Semi-supervised learning methods such as Mean Teacher [1], Model Mix [2], and CPS [3]
have been proposed.

[1] Tarvainen, Antti, and Harri Valpola. "Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results." Advances in
neural information processing systems 30 (2017).

[2] Zhang, Ke, and Vishal M. Patel. "Modelmix: A new model-mixup strategy to minimize vicinal risk across tasks for few-scribble based cardiac segmentation." International
Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024.

[3] Chen, Xiaokang, et al. "Semi-supervised semantic segmentation with cross pseudo supervision." Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021.
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Low-cost annotation

Fully-Supervised Segmentation Semi-Supervised Segmentation
Solution: ‘
Utilize data without annotations. )
Motivation: &b ¥
Train a segmentation model using

a small amount of annotated data
and a large amount of unannotated
data.
- Annotation cost High @

] Annotation
Reduce annotation costs. information Complete © Incomplete @

Utilize Cross Pseudo Supervision (CPS) with pseudo-labels from different models.
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Cross Pseudo Supervision (CPS)

e Two different networks make o Trmro

predictions on different Frediction, - (EELER

: !
augmentations of the same i
Model 1 = =

|

!

image to generate pseudo-
labels.

w

* One pseudo-label serves as N,
training data for the other Supervised
model. N

N\

* Cross Pseudo allows use in
cases without labels, and
accuracy improves as ‘
heterogeneity between " _
models increases [1].

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, Strong Augmented Weakly Augmented Cross Supervision
and active learning. NIPS 1994.7 Sample Process Sample Process Process
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Cross Pseudo Supervision (CPS)

 Two glifferent ne.tworks make Prediction F‘S;u' 4o laba]
predictions on different !

augmentations of the same :
=

!

|

_<

M N W EEE F SN F O ESE F S F S O S S O S F S S F . -

Model 1 =

image to generate pseudo-
labels.

w

* One pseudo-label serves as N,
training data for the other Supervised
model. N

N\

* Cross Pseudo allows use in
cases without labels, and
accuracy improves as
heterogeneity between
models increases [1].

{ )

Model 2

)

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, Strong Augmented Weakly Augmented Cross Supervision
and active learning. NIPS 1994.7 Sample Process Sample Process Process
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Cross Pseudo Supervision (CPS)

e Two different networks make o Trmro

predictions on different Prediction  pseudo label

. !
augmentations of the same i
Model 1 = =

|

!

image to generate pseudo-
labels.

w

e 10ne pseudo-label serves as .
itraining data for the other supervised
imodel. ~

N\

* Cross Pseudo allows use in
cases without labels, and
accuracy improves as , _
heterogeneity between " _
models increases [1].

[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, Strong Augmented Weakly Augmented Cross Supervision
and active learning. NIPS 1994.7 Sample Process Sample Process Process
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Cross Pseudo Supervision (CPS)

e Two different networks make o Trmro

predictions on different Prediction  pseudo label

. !
augmentations of the same i
Model 1 = =

|

!

image to generate pseudo-
Supervised

\\

/' §

labels.
* One pseudo-label serves as

Heterogeneity
is needed

training data for the other
N
\ 4 S

model.

* Cross Pseudo allows use in
cases without labels, and

M N W EEE F SN F O ESE F S F S O S S O S F S S F . -

. ot Model 2 =
accuracy improves as e | ——
heterogeneity (& %) —— _
between models increases [1].
— ) k]
[1] Krogh A, and Jesper V. Neural network ensembles, cross validation, Strong Augmented Weakly Augmented Cross Supervision

and active learning. NIPS 1994.7 Sample Process Sample Process Process
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Heterogeneity (BET¥)

Heterogeneity
The diversity of features extracted by different models
from the images [1].

Method to enhance heterogeneity

* Train different models with category-specific weights.

* Amplify the differences between input images using
different augmentation methods.

\ / Distribution-aware
< > Model B

Pseudo Logits B
Label B [p%, p%]

Difficulty-aware

"\
s o Logits A Pseudo
|I|I||||
' Jca

fo \I

Input: [z, "]

-4 Label: ¢ F--

- & mmml- Weighting the loss
DHC [2]
Train different models with category-specific weights.

Supervision

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image
segmentation." International Conference on Medical Image Computing and
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.
[2] Chen, Yifei, et al. "Semi-supervised Medical Image Segmentation Method
Based on Cross-pseudo Labeling Leveraging Strong and Weak Data
Augmentation Strategies." arXiv preprint arXiv:2402.11273 (2024).

DFCPS [3]
Using different data augmentations
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Train different models with category-specific weights

Category imbalance

The imbalance in category-wise
voxel counts

The category-wise voxel-count on
Organ-Segmentation dataset BTCV [1]

Categories
Spleen (Sp)
Right Kidney (RK)
Left Kidney (LK)
Gallbladder (GA)
Esophagus (Es)
Liver (Li)
Pancreas (PA)
Aorta (Ao)
Inferior Vena Cava (IVC)
Portal & Splenic Veins (PSV)
Stomach (St)
Right Adrenal Gland (RAG)
Left Adrenal Gland (LAG)

[1] Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: 2015 MICCAI Multi-Atlas

[abeling Beyond Cranial Vault—Workshop Challenge (2015])
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Train different models with category-specific weights

The of full-
supervision on organ segmentation
dataset BTCV using U-Net[1]

Category imbalance

* The imbalance in category-wise
voxel counts

80

* The imbalance in catezory-wise
ditficulty

60

Dice (%)

40

20 A

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image
segmentation." International Conference on Medical Image Computing and Sp RK LK GA Es Li St Ao IVC PSV PA RAG LAG
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023. Category
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Train different models with category-specific weights

Category imbalance

 Category-wise voxel counts and
are
different

¥

* Using Category-wise voxael
counts based weight and

to train different models

Comparison of category-wise

and in CHD [1].
Left Ventricle (LV)-7 | | |f ] Difficulty Rank
1 Distribution Rank
Right Ventricle (RV) - 6| | E
Left Atrium (LA) - 3| | E
Right Atrium (RA)- 2- I
Myocardium (My) - 1 | | |4
Aorta (Ao)- 4| | 6
Pulmonary Artery (PA) - 51 | |7

Xu, X., Wang, T., Shi, Y., Yuan, H., Jia, Q., Huang, M., Zhuang, J.: Whole heart and
great vessel segmentation in congenital heart disease using deep neural networks
and graph matching. In: MICCAI, Proceedings, Part Il, LNIP, vol. 11765, pp. 477—-
485 (2019). Springer
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Problem we aiming to solve

The lack of the data »

Dual-Network framework (CPS)

/\

Category-wise imbalance

w

-

Train different models with
category-specific weights

The lack of E2& 14

w

Applying different augmentation
for the same image as the input
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Train different models with category-specific weights

Category-wise voxel counts based weight (DisW) W%t5[1,2]

Category-wise voxel counts in
iteration t

Categories
I Spleen (Sp)
I Right Kidney (RK)
Left Kidney (LK)
HEl Gallbladder (GA)
Esophagus (Es)
I Liver (Li)
B Pancreas (PA)
HEl Aorta (Ao)
Inferior Vena Cava (IVC)
B Portal & Splenic Veins (PSV)
I Stomach (St)
B Right Adrenal Gland (RAG)
I Left Adrenal Gland (LAG)

Counts: 4, ={a;c|c=12,..K}

K: the total number of categories

Inverse voxel ratios of Voxel counts based weight
category c in iteration t of category c in iteration t
. log(,
max A; wils = 8(rec)
Tte = T maxXpe(1,2,..K} log(rt,p)
,C

dis
dt ¢ Tt,c‘ dt.c rt,C‘ Wt c ‘

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced semi-
supervised medical image segmentation." International Conference on Medical Image Computing and Computer-Assisted
Intervention. Cham: Springer Nature Switzerland, 2023.

[2] Chen, H., Fan, Y., Wang, Y., Wang, J., Schiele, B., Xie, X., Savvides, M., Raj, B.: An embarrassingly simple baseline for
imbalanced semi-supervised learning. arXiv preprint arXiv:2211.11086, 2023.
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Train different models with category-specific weights

Category-wise
Segmentation

difficulty in
iteration t

[1]

Use the Dice score for each category in each iteration as
the difficulty evaluation criterion.

— Dice score [2]

- Use the rate of change in the Dice score (Population
Well-learned speed [3] Stability Index, PSI) for each category as the
(% /1 difficulty evaluation criterion.

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced semi-supervised medical image
segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.
[2]Sudre, Carole H., et al. "Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations." Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017,
Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3. Springer International Publishing, 2017.

[3] Yurdakul, B.: Statistical properties of population stability index (psi). PhD thesis, Western Michigan University, 2018 46
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Train different models with category-specific weights

Learning Speed

Considering the Dice changes between iterations o and t

t d
: : T,
Well-learned iterations speed Sé’c = Z Ia>o ln( ‘ ) —

T=o0 dT—Lc
*
A=dye—de1c —
\ 4
. . t dT c
Not learned iterations speed St = Z Ip<o In : —
’ T=o0 dT—l,c

dr .: Dice score of category c in iteration T

Learning speed (PSI)

(0.4
o = (S,’;fc + e)
t,c — l
Stc T €

a, €: hyperparameters
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Train different models with category-specific weights

DHC [1]

— Dice score d,c m

. _1inhl
Category-wise — sif

. — — ly _ I
Segmentation Wee = (1= dpc)Sic
difficulty in iter t

B <S§fc + e)a
Well-learned speed  Stc = shte

o N
or—l A
Well learned St,c‘

[1] Wang, Haonan, and Xiaomeng Li. "DHC: Dual-debiased heterogeneous co-
training framework for class-imbalanced semi-supervised medical image
segmentation." International Conference on Medical Image Computing and
Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023.
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Train different models with category-specific weights

Issues in Dice fluctuates significantly, making the training process unstable.

Es m— St IvVC m— PA m—— LAG

] mmm Ao s PSV mmmm RAG

1.0 1

e
)

Dice Based Difficulty
=]
=

e
Y

0.0 T T T T T T T
0 25 50 75 100 125 150 175
Epoch

Dice-based difficulty
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Train different models with category-specific weights

Soluation Changes in Confidence can smoothly reflect the difficulty level of each category [1].
Cdlf
Proposed W mm— Sp LK Es St IVC mmmmm PA mmmm [ AG
] o A0 wmmmm PSY = RAG
1.0 1
; |'| i LAG [1] Qiu, J., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K.: Class-wise

confidence-aware active learning for laparoscopic images
I segmentation. International Journalof Computer Assisted

A Radiology and Surgery 18(3), 473-482, 2023
v II\"‘ PA

e
[o¢]
/
=

2
S

—

b
_-
Z

0.6

Dice Based Difficulty
=]
=

e
Y

0.0 T T T T T T T
0 25 50 75 100 125 150 175
Epoch

Dice-based difficulty
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Train different models with category-specific weights

Soluation By combining Dice and Confidence [1], fluctuations become more stable.
cdif
Proposed W, — S LK P—— VC o DA LAG
mmmm RK mmm (Gg

1.0 1

1 1 n!l 7\
o A 1'4‘1""“
M LN

AN AR
0.8 :%0.8
2 5
3 £
s A
5 0.6 —§ 0.61
2 2
k: 3
o 04 5 0.4
2 o
A E
o
@)
0.2 0.2
0.0 T T T T T T T 0.0 T T T T r r T
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Epoch Epoch
Dice-based difficulty Confidence-based difficulty
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Train different models with category-specific weights

Propose: Confidence-Difficulty Weight (CDifW) w

Prediction map P,
Category-wise position on Ground Truth
Je = {]t,c lc=12, K}
Category-wise voxel counts on Ground Truth
Zt = {Zt,C | C = 1,2, ...K}

cdif
t,c

1 ; 1- Tt c
Tte = Pc,j » = ltc
Zt,ce=dje]; J c E{f{lgfl{} 1- 7”t,c)
Category-wise average The information score i [1] of
Confidence r Category-wise average Confidence r

[1] Qiu, J., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K.: Class-wise confidence-aware active learning for laparoscopic images
segmentation. International Journalof Computer Assisted Radiology and Surgery 18(3), 473-482, 2023
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Train different models with category-specific weights

. . rpe . . di
Propose: Confidence-Difficulty Weight (CDifW) W:clf
— Dice score dc n
Category-wise . i
Segmentation Confidence score Lt — Wtz = itﬁ,c(l —dyc)Sec
difficulty in S:hyperparameter

(0.4
iteration t - Ste T €Y
Well-learned speed  Stc = ( i
Stc TE
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Train different models with category-specific weights

Prediction Pseudo label

o Wm = mm = mm

\I/

Predicti P
Model 1 N rediction . seudo _ |
P1  labely; dis
/\ | 1 Wt c
wx —
! unsup -
\\ Ly Ground
N I Truth
b ! y
N
4 \ \
| . cdif
del 2 m Prediction »! Pseudo | Wi e /

— ) ]
Low Frequency Process High Frequency Process Cross Supervision Process  Supervise with ground Truth
(Only for annotated data) 54
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Problem we aiming to solve

The lack of the data » Dual-Network framework (CPS)
Category-wise imbalance The lack of Z& 1%
L > L3
Train different models with Applying different augmentation
category-specific weights for the same image as the input
B B
Difficulty based DifW Distribution based Dis\W
B

Difficulty-Confidence based CDifW
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Different image augmentations

Related works

Weak Augmentations Strong Augmentations
* Gaussian Noise e CutOut [1]

* Gamma Correction  CutMix [2]

* Gaussian Blur e ClassMix [3]

etc. etc.

Differences @ @
Imbalance @ @

_
©
©
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Different image augmentations

Propose : Double-Mix Pseudo Label (DMP)

Step 1 reference Pseudo Label y* by EMA model

\\ —’

L -
11
1 1

——  EMA Model

~y
|
I

Unlabel datax" - Pseudo Label y*

i | Welghtupdate

\

' I

I 1 1

' Model
|

: 11
-
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Different image augmentations

Propose : Double-Mix Pseudo Label (DMP)

Step 2 Select categories using category-wise weight (in this experiment, WY or WdiS)

~y -

INNN ’—’
11

I

‘ I A Selected categoriesZ WS or wdis
11
| a Class 1 |
I - - — -~ A
Unlabel data x" - =~ Pseudo Label y* cass3 I IIII II
...... A
Classn

Weight aware category choice

The weight for category c represents the probability of
this category being sampled.
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Different image augmentations

Propose : Double-Mix Pseudo Label (DMP)

Step 3 Generate category mask M by selected categories Z and pseudo label y*

NN -

~y
—y -

| 1

I

6 é_.: EMA Model —
I T
| | e Class 1 N
| _-- ==~
Unlabel data x" -~ ase3 IIII II
...... M

Weight aware category choice

cdif

Selected categoriesZ W or Wais

a

A

Generate category mask

Category mask M

59



Here begins our new MIRAI

/Z[™ NAGOYA UNIVERSITY oot NG %

RRRRRRRRRRRRRRRRRRRRRRRRRRR

Different image augmentations
Step 4 Generate mixed sample pair [x", y™]

Propose : Double-Mix Pseudo Label (DMP)

Unlabel data x" _ Pseudo Label y*
@ element-wise product

Unlabeled data x"
6 3 ® Pseudo label y*

Labeled data x!
Category mask M Ground truth yl

xM=x*OM+x'®O(1-M)

Category mask M

R, <-|—e > ) N
: A ym . *
P Mixed sample pair [x, §™] I ) '
Categorymask 1 —Jll [ @ g | = = == = == = =— . @) Category mask 1 — M Mixed Sample palr [xm m]

6

Labeled data x! Ground-truth of labeled data vl
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Different image augmentations

fa, [g:Segmentation models

Propose : Double-Mix Pseudo-label (DMP) fa, fg: EMA models of f4, fp

Generate mixed sample pairs [y, x7'] and [y}, x7] based on W*” and W%

Model f, Model f5

—

F~~o =77 I~ T
l I I I o I
! EMAModel f; | : EMA Model f5 i
Double-mix A | 1 | <t x¥ 3 e : Double-mix B
I -~ S~ - S~ Jd
Remixed Remixed Remixed Remixed
label: y’* image:xy’ image: x5 label: y3'
Tl U
B I 7 Rl B ||||||| |
Generated sample pairs A - label: y Generated sample pairs B

Aif .. +dis
&ty

W 61
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Different image augmentations

Related works Proposed method
Weak Augmentations Strong Augmentations Double-Mix Pseudo Label
e Gaussian Noise e CutOut [1] e Used different weights
e Gamma Correction e CutMix [2] for data augmentation
e Gaussian Blur * ClassMix [3] * Considered category-

etc .. etc .. wise imbalance

oference ® © ©
— ® ® ©
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Problem we aiming to solve

The lack of the data

» Dual-Network framework (CPS)

/\

Category-wise imbalance

L] -

Train different models with
category-specific weights

- B
Difficulty based DifW Distribution based DisW
B

Difficulty-Confidence based CDifW

The lack of E2& 14

w

Applying different augmentation
for the same image as the input

E B
Double-Mix Pseudo Label
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Double-Mix Pseudo Label Framework (DMPF) (in iteration t)
fa, fz:Segmentation models

e Stepl: Calculate Wthifand Wtdis f1, fg: EMA models of £y, f5

* Step2: Update the EMA models and Generate pseudo label of unlabeled
datayy, Vg

« Step3: Generate DMP sample pairs [y4', X,,'] and [y3', X5'] by DMP, using

[WCdlf , vyt x%, y¥land [WS, x| y!, x*,y¥], respectively

e Step4: Calculate the unsupervision loss of sample pairs

) |
L™ = Lgo" P (WS, £4 (80, Y1) + Liga P (WA, fo (X, 1)

?eLZ (W,x,y) =Lpjce (WX, Y)+‘ Lcg (W,x,y) L g: weighted Cross Entropy loss

Log (W, X,y) = Lcg (W,X,y) Lp;.e: Weighted Dice loss
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Double-Mix Pseudo Label Framework (DMPF) (in iteration t)

e Stepb: Calculate the supervision loss

) |
L = Le b (Wi fa(xh )9t ) + Lggb (W™, fo(ah ), 9 )

e Step6: Calculate the unsupervision loss of unlabeled sample pairs

d P .
= Leah (W™ fa (™), T + Lgab (WS, fz (2 ), T2

* Step7: Calculate the total loss and optimize the models

protal — [SuP 4 [Wsub 4 g 0: Hyperparater
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Double-Mix A - E/5 = Double-Mix B
Mixed label: yj* || Mixed image: x}' Mixed image: X} Mixed label: yi

Input: [x!,x*]
Label: y*

Generate DMP using 2 different weights (Step. 1-3)

Weight A Weight B

DMP Modules w Infer without gradient =P Double-mix process =‘ CPS framework training » Apply the weight distribution
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ey
|
|

EM
I’ - 2 —y — ﬁ’ - -~y .
Double-Mix A K E/fa Double-Mix B

o~ N Calculate losses using labeled and generated data (Step. 4-7) [ 7 N

Mixed label: y}* Mixed image: x| . ixed image: X2 Mixed label: y2
’Xu yl
Input: [x!,x*]
Label: y*
x! A 4
Model f, Model f5
Weight A Weight B
-IIIIIII IIIIIII
- .

Mixed Lmzx
Logits B

Pseudo Pseudo
Label Label

Va /2
CPS Framework

DMP Modules w Infer without gradient =P Double-mix process =‘ CPS framework training » Apply the weight distribution
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Experiment setting

* Datasets

CHD [1]
Whole heart and great vessel segmentation

Training set: 88
Validation set: 11
Test set: 11

BTCV [2] (AEHFEER)

Abdominal Organ Segmentation Dataset

Training set: 20
Validation set: 4
Test set: 6

~
Labeled data
Training set
Unlabeled data
Validation set /
Test set

[1] Xu, X., Wang, T., Shi, Y., Yuan, H., Jia, Q., Huang, M., Zhuang, J.: Whole heart and great
vessel segmentation in congenital heart disease using deep neural networks and graph
matching. In: MICCAI, Proceedings, Part II, LNIP, vol. 11765, pp. 477—-485, 2019

[2] Landman, B., Xu, Z., Igelsias, J., Styner, M., Langerak, T., Klein, A.: 2015 MICCAI Multi-
Atlas Labeling Beyond Cranial Vault—Workshop Challenge, 2015
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Experiment setting

ARz DSRAXT B IDMEABIE D SRA X B

o A& A (Sp) oTILE (LV)
Bl (RK) & 0ZE (RV)
o /- B Hid (LK) o LB (LA)
«JHZE (Ga) oaiILE (RA)
o EJHE (Es) o.[Mi7 (MyoO)
o 1 FHiE (Li) o XEJAR (AO)
o5 (St) o fENAR (PA)
o XNENAM (Ao)

o N REFAT (IVC)

o P - AREHAM (PSV)

o [5xfik (Pa)

«5EIE (RAG)

o T HIE (LAG)
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Experiment setting

* Model Training * Details
Training Settings: V-Net
3 random seeds, trained 3 times. kernel numbers:

[32, 64, 128, 256, 512] in encoder and decoder

] Input patch size:
Segmentation Model: (128, 128, 64)

5-layer V-Net [1].

Metrics

. o
Data Augmentation: ice score

Average Surface Distance (ASD)
Gaussian noise, random flip, random rotation,

random crop

[1] Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: Fully convolutional neural networks for volumetric
medical image segmentation. In: 3DV, pp. 565-571, 2016. IEEE
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Experiment setting

* Mainstream Approaches
SS-Net [1]
DST [2]
Depl [3]
CPS [4]
CReST [5]
CLD [6]
DHC (DisW + DifW) [7]
Ours w/o DMP (DisW + CDifW)
Ours (DisW + CDifW + DMP)

[1] Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and classseparation for semi-supervised
medical image segmentation. In: MICCAI, LNCS, vol. 13435, pp. 34-43 (2022). Springer

[2] Chen, B., Jiang, J., Wang, X., Wan, P., Wang, J., Long, M.: Debiased self-training for semi-supervised
learning. In: NeurlPS, vol. 35, pp. 32424-32437 (2022)

[3] Wang, X., Wu, Z., Lian, L., Yu, S.X.: Debiased learning from naturally imbalanced pseudo-labels. In:
CVPR, pp. 14647-14657 (2022)

[4] Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo
supervision. In: CVPR, pp. 2613—-2622 (2021)

[5] Wei, C., Sohn, K., Mellina, C., Yuille, A., Yang, F.: CReST: A class-rebalancing self-training framework
for imbalanced semi-supervised learning. In: CVPR, pp. 10857-10866 (2021)

[6] Lin, Y., Yao, H., Li, Z., Zheng, G., Li, X.: Calibrating label distribution for classimbalanced barely-
supervised knee segmentation. In: MICCAI, LNCS, vol. 13438, pp. 109-118 (2022). Springer

[7] Wang, H., Li, X.: DHC: Dual-debiased heterogeneous co-training framework for class-imbalanced
semi-supervised medical image segmentation. In: MICCAI, LNCS, vol. 14222, pp. 582-591 (2022).
Springer
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Result on using 5% labeled CHD dataset

 The proposed method achieves higher Average Dice Scores by Method
average accuracy than related methods.
| Method | Average Dice |  ASD
SS-Net 49.7 7.9 g
DST 62.3 5.6 g
Depl 63.6 5.1 §°
CPS 62.0 5.5 < 50
CReST 61.5 6.4
CLD 62.4 5.9 *]
DHC 64.1 6.7 2.
Ours w/o DMP 64.3 6.0

Ours 66.5 6.0
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RV Dice Scores by Method

Result on using 5% labeled CHD dataset | Voxel Rate: 7.5%

* The proposed method achieves higher
accuracy for categories with fewer voxels
compared to related methods.

RV Dice (%)

PA Dice Scores by Method
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Result on using 5% labeled CHD dataset

The proposed method achieves better segmentation accuracy, especially in
challenging categories (PV, RA, Ao).

LY o RV M LA

Ground Truth DMPF(ours)
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Result on using 40% labeled BTCV dataset

 The proposed method achieves higher accuracy for categories with fewer voxels compared
to conventional methods.

Methods Average Dice and ASD Low Voxel count category
Dice (%) ASD Es (0.49%) RAG (0.14%) LAG (0.17%)
SS-Net 42.5£6.5 49.2+10.1 0 0 0
DST 40.1+0.9 46.8+2.2 0 0 0
Depl 41.2+0.9 48.1+0.5 0 0 0
CPS 37.5+2.1 52.5+11.1 0 0 0
CReST 38.5+3.8 22.1+8.7 21.2 18.1 9.5
CLD 54.7%x1.2 7.6x0.6 28.7 25.3 27
DHC 59.6%+1.2 4.5+0.6 44.8 33.1 40.9
ours w/oDMP  60.0£0.7 3.9+0.5 45.8 28.9 50.5
ours 61.2+0.7 4.06%0.6 48.5 36.4 48

75



Q)
7S [0

Here begins our new MIRAI —

/=™ NAGOYA UNIVERSITY * moonsHoT [N

RRRRRRRRRRRRRRRRRRRRRRRRRR

Result on using 40% labeled BTCV dataset

MsSp WMRK LK Ga [ Es Li | St

The proposed method achieves
better segmentation accuracy,
especially in challenging
categories (Es, RAG, LAG).

Ground Truth DMPF(ours) DHC CLD DePL
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Results on using different ratio labeled dataset

60

50t

30t

20 |

Our method has advantages when using a smaller amount of annotated data.

-0 SS-Net 80
- --CLD
8- CPS
CReST
| -@-Depl
DHC
DST
—k— ours
S
Q
2
[
10% 20% 40%
Percentages using the BTCV dataset.
(a)

75 t

70 |

65 f

60 |

55 ¢

50 ¢

—8-SS-Net
—--CLD
—8-CPS
CReST
—@-Depl
DHC
DST
=k ours

5% 10% 20%
Percentages using the CHD dataset
(b)

Results using different percentages of labeled-data. (a) BTCV, (b) CHD
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Our method achieved p-values less than 0.05 across multiple

Significance test
splits on two datasets, demonstrating its effectiveness.
*p<0.05 **p<0.01 *p<0.05 **p<0.01
100 100
* * * * * *k
| p =0.0312 | | p =0.0312 | | p =0.0312 | | p = 0.0420 | | p =0.0186 | | p = 0.0020 |
- ™ S
60 1 601
S S o
s < o
) )
.8 .8
A A o o
40 401 o °
o
20 1 20
o
0 " T " " " " 0 " " " T " T
Ours  Second best method Ours  Second best method Ours  Second best method Ours  Second best method Ours  Second best method Ours  Second best method
10% BTCV 20% BTCV 40% BTCV 5% CHD 10% CHD 20% CHD
(a) (b)

The result of Wilcoxon signed-rank test. (a) The results using 10%, 20%, and 40% of the BTCV dataset as the labeled data, (b) the results using
5%, 10%, and 20% of the CHD dataset as the labeled data
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The effect of using two distinct category-wise weights in model training

CDifW: Confidence + Difficulty score
: Confidence + Distribution score
DifW: Difficulty score

= itﬁc waLsw DisW: Distribution score

The results of training CPS module using different

. . . . cdifw
Confidence information score in w, . weights on 10% labeled BTCV dataset.
Methods Dice (%) ASD
DisW-DifW 29.8+5.4 28.1+8.5
CDifW-DisW 29.9+2.7 25.38.3
CDifW-CDifW 26.412.8 25.2+3.5
CDifW- 29.4+2.6 27.3+3.4
DisW-DisW 26.2+4.7 32.2+5.0
- 28.9+2.6 25.5+4.4
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The effect of using two distinct category-wise weights in model training

CDifW: Confidence + Difficulty score
: Confidence + Distribution score
DisW: Distribution score DifW: Difficulty score

_ B disw

= ltcWte

The results of training CPS module using different

. . . . cdifw ]
Confidence information score in w, . weights on 10% labeled BTCV dataset.

* Using the same weights fails to account for Methods Dice (%) ASD
category-specific differences, resulting in DisW-DifW 29.845.4 28.1%8.5
performance degradation (e.g., CDifW-CDifW, CDifW-DisW 29.9+2.7 25.318.3
DisW-DisW). CDifW-CDifwW 26.4+2.8 25.2+3.5

CDifW- 29.4+2.6 27.313.4
DisW-DisW 26.2+4.7 32.2+5.0
- 28.912.6 25.514.4
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The effect of using two distinct category-wise weights in model training

_ P disw
= ltcWte

|
Confidence information score in nglfw
* Using the same weights fails to account for
category-specific differences, resulting in

performance degradation (e.g., CDifW-CDifW,
DisW-DisW).

improves performance by considering
difficulty and distribution ( -
outperforms Dis\W-DisW).

CDifW: Confidence + Difficulty score
: Confidence + Distribution score

DisW: Distribution score

DifW: Difficulty score

The results of training CPS module using different

weights on 10% labeled BTCV dataset.

Methods Dice (%) ASD
DisW-DifW 29.815.4 28.1+8.5
CDifW-DisW 29.912.7 25.318.3
CDifW-CDifW 26.4+2.8 25.2+3.5
CDifW- 29.4+2.6 27.313.4
DisW-DisW 26.2+4.7 32.215.0
- 28.912.6 25.514.4
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The effect of using two distinct category-wise weights in model training

CDifW: Confidence + Difficulty score
: Confidence + Distribution score

= lf wilsw DisW: Distribution score DifW: Difficulty score
| cdifw The results of training CPS module using different
Confidence information score in w, . weights on 10% labeled BTCV dataset.

* Using the same weights fails to account for Methods Dice (%) ASD
category-specific differences, resulting in DisW-DifW 29.845.4 28.1%8.5
performance degradation (e.g., CDifW-CDifW, CDifW-DisW 29.9+2.7 25.318.3
DisW-DisW). CDifW-CDifwW 26.4+2.8 25.2+3.5

improves performance by considering CDIfW-CL 29.4+2.6 27.3+3.4
difficulty and distribution ( - DisW-DisW 26.24.7 32.245.0
outperforms Dis\W-Dis\W). - 28.9+2.6 25.54.4

CDifW- has lower heterogeneity due to
the introduction of confidence on both sides,
resulting in lower accuracy compared to CDif\W-
DisW.

EEBEDSE

BHFELELL
The higher the heterogeneity of the

weights, the more desirable it is.
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Compasion with other strong augmentation methods

 Our method considers category-wise
imbalance, making it superior to other
strong data augmentation methods.

ClassMix augmented the images without
considering the category-wise weights,

caused performance reduce

[1] DeVries, T., & Taylor, G. W. (2017). Improved Regularization of
Convolutional Neural Networks with Cutout. arXiv preprint
arXiv:1708.04552.

[2] Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., & Yoo, Y. (2019). CutMix:
Regularization Strategy to Train Strong Classifiers with Localizable
Features. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 6023-6032.

[3] Olsson, V., Tranheden, W., Pinto, J., & Svensson, L. (2021). ClassMix:
Segmentation-based Data Augmentation for Semi-Supervised Learning. In
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 1369-1378.

Comparsion with other strong data augmentations on

10% labeled BTCV dataset. All the experiments are

applied CDifW-DisW

Methods Dice (%) ASD
CDifW-DisW 29.9+2.7 25.3+8.3
CutMix [1] 31.5+2.6 20.4#5.8
CutOut (2] _ | _ _ 30.943.7 .. 24.516.8
(ClassMix[3] 29.38.3 33.1:7.0 |
“TO0urs T T[T T 35.7t1.0 18.2+4.3
It is crucial to perform image

augmentation targeted at category

imbalance.
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Performance on balanced dataset

Our CDifW- IS
better than Dif\W-

After using DMP, a
decline in accuracy
was observed.

[1] Long, J.R., Frew, M.., Brazaitis, M.P.: Virtual colonoscopy in the US army: current utilization at the

Walter Reed Army Medical Center. Abdominal Imaging 36, 149—-152 (2011). Springer

Colon Segmentation Task (based on WRAMC [1])
2 balance categories: Air area and Solid Material
10 Labeled cases, 3-fold cross validation

95.0

92.5

90.0

87.5

DICE (%)

85.0

82.5

80.0

71.5

75.0

DifW-DisW

(a)

I Air Area
I Solid Material
Il Mean

CDifW-DisW  CDifW-DisW+DMP

25

DifW-DisW

(b)

Bl Air Area
I Solid Material
Hl Mecan

CDifW-DisW  CDifW-DisW+DMP
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Performance on balanced dataset

B AirArca B  Solid Material

Applying the DMP module
(CDifW- +DMP) to the
balanced dataset likely
compromises some spatial
information, resulting in
reduced performance.

CASE 1

On a simple and balanced

dataset, overly strong data
augmentation may not be

necessary.

CASE 2

Ground Truth CDifW CDifW+DMP SS-Net CLD
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Discussion

€ What issues did we face in this study?
@ » CT segmentation requires extensive pixel-level annotated data, which is high-cost.
@ » The category-wise weight is not stable, may cased performance increasing

@ » Augmentation methods don’t consider class imbalance, leading to poor performance for
challenging categories.
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Discussion

€ What issues did we face in this study?
@ » CT segmentation requires extensive pixel-level annotated data, which is high-cost.
@ » The category-wise weight is not stable, may cased performance increasing

» Augmentation methods don’t consider class imbalance, leading to poor performance for
challenging categories.

¢ What methods we proposed to address above issues?

> Proposed Confidence-Difficulty Weight (CDifW) to balance training across classes
based on confidence and Dice score.

> Introduced Double-Mix Pseudo-label Framework (DMPF) to augment images based
on class distribution and difficulty, enhancing segmentation for challenging categories.
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Discussion

€ What issues did we face in this study?
@ » CT segmentation requires extensive pixel-level annotated data, which is high-cost.
@ » The category-wise weight is not stable, may cased performance increasing

@ » Augmentation methods don’t consider class imbalance, leading to poor performance for
challenging categories.

¢ What methods we proposed to address above issues?

> Proposed Confidence-Difficulty Weight (CDifW) to balance training across classes
based on confidence and Dice score.

> Introduced Double-Mix Pseudo-label Framework (DMPF) to augment images based
on class distribution and difficulty, enhancing segmentation for challenging categories.

€ What are the limitations of our method?

» DMP module introduces noise in balanced datasets by potentially disrupting spatial
information.

» The practicality of the results needs to be evaluated by clinicians.
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Conclusions and Foreseeing
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Summary of the topics
@ High annotation cost in data annotation for medical image segmentation

@ Since endoscopic data differs from CT data, we proposed two approaches
tailored to each data type, to solve this problem

» Train laparoscopic video segmentation model with limited Pixel-Level annotated data and
abundant category-Level annotated data (Topic 1)

» Train CT segmentation model with limited Pixel-Level annotated data and abundant non-
annotated data (Topic 2)

@ Provide successful solutions to two important tasks in medical image
segmentation with low annotations cost

Main limitations:
» Still need annotated data in model training (Topic 1)

» Performance reduce in simple and balanced dataset (Topic 2)

90



Here begins our new MIRAI

/Z[™ NAGOYA UNIVERSITY R OONSHOT "’::.:::;_f_l I i ..

EEEEEEEEEEEEEEEEEEEEEEEEEE

Issues to be Solved

& Can we finetuning the large pre-trained models (Totalsegmentator, MedSAM,
etc.) to further reduce the cost of required annotations?

M Y00
0
-

Totalsegmentator MedSAM
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Issues to be Solved

& Can we finetuning the large pre-trained models (Totalsegmentator, MedSAM,
etc.) to further reduce the cost of required annotations?

€ How can annotation cost be quantified and used as a standard for model
evaluation?

Totalsegmentator MedSAM Quantification of annotation cost
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Issues to be Solved

& Can we finetuning the large pre-trained models (Totalsegmentator, MedSAM,
etc.) to further reduce the cost of required annotations?

€ How can annotation cost be quantified and used as a standard for model
evaluation?

@ The results should be confirmed by clinical doctors to evaluate the clinical
significance of our method.

Totalsegmentator MedSAM Quantification of annotation cost Evaluation of clinical doctors
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« [1] Zhang, Luyang, Yuichiro Hayashi, Masahiro Oda, and Kensaku Mori. "Towards better laparoscopic video segme
ntation: A Class-Wise Contrastive Learning Approach with Multi-Scale Feature Extraction." Healthcare Technology
Letters 11.2-3:126-136 (2024)

* [2] Zhang, Luyang, Yuichiro Hayashi, Masahiro Oda, and Kensaku Mori. "Double-Mix Pseudo-Label Framework: E
nhancing Semi-Supervised Segmentation on Category-Imbalanced CT Volumes." International Journal of Computer
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If you are interested in my work, please visit
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